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Charging station selection optimization for plug-in
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framework
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Abstract—In this paper, we describe a framework for the
selection of the best charging station when plug-in electric
vehicles (PEV) need to recharge their batteries, while at the
same time the power utilities, which own the charging stations
(CS), optimize their revenue. We use two-way communication to
transmit positioning information, which is a key factor so that the
plug-in electric vehicles evaluate its required energy. Within this
framework, we also describe a procedure that is implemented
in a distributed manner and is based on a non-cooperative
oligopoly game that makes use of differentiated products theory
and conjectural variations to provide a Nash equilibrium in prices
and quantities.

Index Terms—Battery recharge, conjectural variations, game
theory, oligopoly, plug-in electric vehicle.

I. INTRODUCTION

MANY agree that electric power systems are experi-
encing a profound change driven by the need for

environmental compromise and energy conservation. To this
end, plug-in electric vehicles (PEVs) are considered key actors
in the new electric power framework due to their potential to
reduce CO2 emissions and transportation costs. On the other
hand, electric power grid itself must be utterly transformed
into a “smart grid”, where computing and communication
technologies and services are integrated with the electric power
infrastructure [1].
Progressive deployment of PEVs is predicted for the next

years (Fig.1). For instance, the U.S. Department of Energy
(DOE) gives estimates for the amount of plug-in vehicles that
will be more than 1.2 million by the end of 2015 [2]. Yet, this
deployment can lead to undesired situations if it is made with-
out control: a number of PEVs plugged into, e.g., a parking
garage could overload the grid, which is often working close to
its operational limit. Moreover, the unbalanced load conditions
may result in degradation of power quality and damage utility
equipments and customer appliances [3], [4]. These and some
more factors, such as the need of unexpected recharging, make
think that, for the PEVs, a recharging infrastructure is required
with the same functionalities as the currently deployed gas
station networks.
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Figure 1. Expected sales of electric vehicles, in percentage of total vehicles
sales [5].

One of the major challenges that emerges with the arrival of
PEVs is the existence of three levels of charge specifications,
namely Level 1 (residential and commercial buildings), Level
2 (specific charging facilities) and Level 3 (fast charging).
They provide quite different charge times because of the
different VAC levels: for a 10 kWh battery, we require about
5,5 hours for Level 1, 1–2 hours for Level 2 and less than 1/2
hour for Level 3. Although Level 2 additional infrastructure
may make sense in residential garages and commercial parking
lots, this Level 2 infrastructure have the potential problem
of finding a free plug in our garage. Additionally, the global
system cost may not be advantageous compared to other types
of infrastructures [6] and we still need DR mechanisms. In
second place, residential and commercial charging facilities
are not adequate due to their limited availability, mainly owing
to locational and timetable restrictions.
Although demand response (DR) and demand-side manage-

ment (DSM) schemes may provide satisfactory solutions for
the existing grid, they do not cover challenges related to PEVs
such as the three levels of charging or where to do the recharge
if we are running out of batteries. DR mechanisms can
encourage reduction of prices and enhance robustness since
they include interactions among participants such as wholesale
markets, retail utilities and customers. Even customers may
adjust their demand in response to external signals such as
grid failures or price changes. Along with DR, DSM enables
the users to employ the energy more efficiently. These DR
mechanisms can be used to optimize the charge of electric978-1-4577-2159-5/12/$31.00 ©2011 IEEE 
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vehicles seeking to schedule the charge when the electricity is
more economic [7]–[9]. In [7], PHEV (plug-in hybrid electric
vehicles) agents communicate their desired level of charging
to a PHEV manager. The PHEV manager optimally distribute
the available energy after communicating the total required
energy to an energy hub. In this scheme different factors
such as price and amount of energy are considered for the
optimal distribution of energy. In [8], the authors propose a
centrally controlled charging scheme based on centralized PEV
aggregators that can act on the power market to minimize
the cost of charging the PEVs. This scheme considers some
practical constraints in the low-voltage distribution grid and
the outcome is an optimal scheduling of the PEVs charging.
A centralized approach is also followed in [9], where a charge
plan is elaborated by a charge controller to find the state of
charge curve that maximizes the vehicle’s owner benefit.
It is then clear that to make a broad adoption of PEVs

possible a dedicated infrastructure besides of residential and
industrial connections must be available to facilitate Level 2
and Level 3 charging when it is necessary. From this public
infrastructure viewpoint, two strategies can be adopted: battery
charging (plugging it into the grid) and battery swapping
(exchanging it for a charged battery) [10]. Battery swapping is
quicker but it causes a considerable increase in the global num-
ber of manufactured batteries and, moreover, the associated
costs in storage and transportation may raise batteries price,
making its use inadvisable. On the other hand, battery charging
provides a similar service to that provided by gas stations,
where a PEV is plugged directly to a charging station. Their
main drawback of current battery technologies is the charge
time, although it is expected that coming improvements in
PEV batteries technologies as long as the apparition of Level
3 fast chargers reduce the charge time in the next future to as
little as fifteen minutes [11].
In this paper we study the problem of selecting the best

charging station (owned by utility providers) 1 for a given
PEV, according to criteria of price and distance. Since DR
and DSM mechanisms enable utility providers to adapt power
distribution and prices in real time according to users demand,
we propose a game-theoretic approach that exploits such
mechanisms and wireless communications to optimize the
charging cost for the PEV. We thus take advantage of a
two-way communications system that exchanges information
among the PEVs and the charging stations. The two-way com-
munication associated to the battery charging process allow
power generators to adjust their production to the demand in
real time. The joint use of DR schemes and traffic patterns or
average consumption data have been recently applied to the
problem of charging batteries for PEVs [12], [13]. However,
these data may become outdated and are not useful when the
demand must be adapted in real time, as it is expected to
happen in the next years with the continuous growing in the
number of PEVs.
Although some studies have addressed the problem of

1In this work, we assume that charging stations are owned by utility
providers, or simply utilities, and that utility providers, also known in the
related literature as retail utilities, acts also as electricity generator companies.
Then, throughout this paper we use these terms indistinctly.
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Figure 2. Oligopolistic game-theoretic framework for charging station
selection: main steps

optimizing the charge of PEVs, as the above mentioned, all
of them consider that a central entity controls the process.
However, the charging stations are likely to use renewable
energy sources such as photovoltaic and wind power stations
and therefore the existence of such central coordinator hub is
not easy to implement. This is why we propose a distributed
approach based on oligopoly models that uses the PEV’s
positioning to provide the best charging station (in economic
terms) to each PEV. In this direction, a very few works have
addressed the optimal choice of charging station. To the best
of our knowledge, the only related work is that of Pan et
al. [14], which tackles somehow this problem, although the
studied scenario is different: they study the problem of how
to optimally site the charging stations (swapping stations in
this case) from a statistical perspective.
We make the distinction between fully-battery powered

electric vehicles (PEV) and plug-in hybrid electric vehicles
(PHEV). Most studies consider PHEV. Although the possi-
bility in these vehicles to use gasoline provides a backup
energy when they run out of batteries, this has two major
drawbacks. On the one hand, the PHEV must be provided with
two engines, one fuel-powered and one battery-powered. For
this reason, the cost, and obviously the price, will be higher.
On the other hand, different works show the impact of PHEV
penetration on power generation [15], but this impact is more
notorious for the case of PEV and has to be considered for
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Figure 3. System model: distance from a plug-in electric vehicle (PEV1) to
the available charging stations

the future. In this paper we focus on PEV because our believe
is that in the long term most electric vehicles will be fully
battery-powered.
The above exposed ideas are collected in the framework

presented in this paper, which is schematically shown in Fig.2.
Basically, the framework consist of the following steps. First,
the PEVs obtain CSs’ positioning information and request
energy form different CS. Once the PEVs’ requests are re-
ceived, each CS establishes its energy price by means of a non-
cooperative oligopoly game, and communicates the price to the
PEVs. Finally, each PEV determines the best CS according to
the price and the distance to the CSs.
The details of the different steps of the framework are given

in the forthcoming sections. In Section II, we introduce the
energy model for the PEVs. In Section III, the oligopoly game
to determine the prices at which the CSs charge the energy is
described. Section IV explains how the PEVs select the best
charging station. Finally, some conclusions are extracted in
Section VI.

II. PEV ENERGY MODEL

For our analysis, we consider a given area whereN charging
stations have been deployed, and K users are present and can
reach some of the CSs. For the sake of simplicity, it is assumed
that each charging station corresponds to a different utility
provider (see Fig. 3). Each user k expresses her willingness
to charge her battery by communicating the desired level of
charging qchk (kWh), which may range from a full recharge of
the batteries up to an estimated quantity that guarantees, for
instance, the return home. The amount of energy consumed
to arrive to each CS is also considered, and is calculated as
q̄ckdkn, being q̄ck (kWh/km) the estimated consumed energy

Figure 4. Plug-in electric vehicle energy model.

per unit of length2 and dkn the distance the user should
travel from her current position to the nth CS. Therefore,
positioning information about its location and CS’s one must
be available to the PEV (for example, by means of GPS
or UMTS communications). In this work, this information is
taken for granted so that each PEV k determines dkn for all
desired charging stations. Therefore, the total estimated energy
required by PEV k from CSn is

qnk = q̄ckdkn + qchk (1)

and qnk is communicated to CSn in order to calculate the
estimated total energy requested by the users.
The battery of the kth PEV is characterized by its total

energy capacity qtotk . We assume that the required energy q chk
is the energy necessary to fill up the batteries, so we have

qtotk = qrk + qchk , (2)

where qrk is the available energy in the batteries at the moment
user k realizes the request (Fig.4). However, without loss of
generality, we consider that all the batteries have the same
total capacity, so qtotk = qT , forall k = 1, . . . ,K .

III. THE OLIGOPOLY FRAMEWORK
The ultimate objective of both PEVs and CSs is to optimize

their benefit, i.e., in the case of PEVs is to pay as less as
possible for the energy, and in the case of CSs, to charge to
the users a price and an energy amount as high as possible.
In our scenario there are some PEVs’ owners who desire

to charge the PEV batteries. The N charging stations, i.e. the
utilities, receive the requests from the users during an adequate
period of time and try to maximize their benefit, but, at the
same time, the users want to pay the lowest possible price
for the energy. This can be achieved by the following two-
step scheme. First, the CSs establish their energy prices to
maximize their benefits, and second, the PEVs choose the
adequate CS to minimize the cost.
Given that utilities compete with each other for the users,

a natural framework for this situation is game theory. In
this case, the number of competing players (the utilities) is

2It is assumed, without loss of generality, that q̄ck is constant for all k.
Nevertheless, different driving energy consumption patterns depending on
variables such as driving style or climate conditions (heating, a/c) can be
constructed from on-board collected data and taken into account in our
proposed model.
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sufficiently low to consider that each utility can influence the
energy price at which PEVs will buy the energy, and that a
single PEV (the consumer) is not so powerful to influence
the energy price, that is, the PEVs’ owners are price takers.
The other possibility is to consider that the PEVs are not
price takers and can discuss the price with the CSs [16]. In
this case, the figure of an aggregator is necessary to gather a
significative aggregated energy demand to encourage a price
negotiation with the CSs. Nevertheless, this focus requires a
previous agreement among the sufficient number of PEV and
a non-real time bargaining mechanism among the aggregator
and the CSs.
The scenario described in the former paragraphs can be

modeled as an oligopoly game [17] that has been largely
used to model energy markets (see, for instance, [18]), in
which the users’ energy demand is the sum of the demanded
energy. In this case, we are interested in prices rather than in
quantities, so we formulate our game as a Bertrand’s oligopoly
game for which the price equilibrium vector is represented as
p∗ = (p∗1, p∗2, . . . , p∗N ), where p∗n denotes the price that CSn
will charge at equilibrium. Also, the demanded energy is kept
constant when the utilities determine their energy prices, since
it is assumed that the PEVs maintain their demanded energy
qnk irrespectively the prices they are offered. Afterwards, each
CS communicates its own price to the PEV, who decides which
CS minimizes her charging cost.

A. Charging station model

Here we will assume that the energy generator is directly
operating the CS. In a more general model, the CS owner,
for instance the utility company, incur in different costs and
revenue functions. Nevertheless, our model may be straight-
forwardly modified to suit to this more general scenario.
A charging station is modeled as follows. As each CS

pertains to an utility company, we assume that the market
demand model for generation companies can be translated to
the CSs. Then, each charging station is characterized by its
quantity q, its unitary price p and its cost function C. The
relationship between quantity and price is represented by a
linear demand function; thus we have

q = A−Bp, (3)

where A and B are the positive coefficients of the linear
demand function, specific to each CS. The total energy re-
quired to the CS by the PEVs is represented by A, that is
A =

∑Kn

k=1 q
n
k , being Kn � K the number of users that send

a request to charge their batteries in a given CS. The total
profit π is given by

π = pq − C, (4)

and we assume a quadratic utility’s cost function C [19]

C = aq2 + bq + c, (5)

being a, b and c the coefficients of the utility’s cost function
with a > 0, b � 0 and c � 0, specific to each CS.

B. Differentiated products
Contrary to what happens when we have a Cournot’s

oligopoly game, the only possible equilibrium for the
Bertrand’s oligopoly game is p∗ = 0 if the players are
sellers of homogeneous products [17]. Nevertheless, if goods
are heterogeneous, we talk about differentiated products and
in this case goods are substitutive [20]. In the context of
this paper, goods are substitutive in the sense that generators
produce different quantities of an unique product (an energy
unit with certain price and cost) but different to the energy unit
produced by the other generators, and the customers (PEVs)
only buy to one producer, that is, the PEV charges its battery
in one and only one CS.
In our case, consumers (PEV’s owners) have preferences

about the products (the energy) offered by the generators. For
a given PEV’s owner, the energy offered by CS1 at price p1
that is very close to him has a higher subjective value than the
energy offered by a distant CS2 at p2. However, the customer’s
final choice is determined by his minimum cost and this is
conditioned to prices p1 and p2, so if CS2 gives a price p2
sufficiently low, it may worth for the customer to travel to
CS2 instead of to the closer station CS1.
The way how energy is differentiated is of paramount

interest. It is commonly assumed that the cost function Cn

is the same for all producers. However, for the smart grid,
where there is a variety of producers ranging from renewable
producers to nuclear plants, this hypothesis is not suitable.
Even more, the energy price is different from one CSn to
any another CSm at equilibrium (n �= m), which is a second
source of energy differentiation.
We can reformulate our CS model of Section III.B to include

differentiated products by considering cross-elasticity, defined
as the change in CSn’s demand caused by a deviation in the
price of CSm:

εnm =
∂qn/qn
∂pm/pm

, (6)

where εnm = 0 for homogeneous products and εnm �= 0
for differentiated products [21]. Suppose that utilities choose
quantity (or output) levels. The CSn’s profit maximizing
qn, given by (3), depends on the quantities chosen by its
rivals, denoted by q−n = (q1, q2, . . . , qn−1, qn+1, . . . , qN ).
Let fn be the function that reveals the interaction, fn =
fn(q1, q2, . . . , qn−1, qn+1, . . . , qN ) = fn(q−n). We can
rewrite (3), for each CSn, such that the interaction is included
as

qn = An −Bnpn − fn(q−n), (7)

which implicitly depends on the rivals’ prices via fn(q−n).
The interaction function fn can then be expressed by

fn(q−n) =

m=N∑

m=1,m �=n

εnmqm. (8)

C. Interaction among charging stations
The interaction among competing CSs can be specified in

different forms. The utilities reaction function specifies this
relationship, giving its profit maximizing output as a function
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of q−n. The slope of this reaction function is the rate at which
the maximizing output changes with a change in a rival’s
output, and it can be represented by the cross-elasticities εnm

of (8). However, the rival’s reaction function is not known to
the other utilities, but CSn may have conjectures about it. In
particular, the firm may make conjectures about the slopes
of the rivals’ reaction functions. These conjectured slopes
are called conjectural variations (CV) [22]. Finally, a supply
function relates the quantity that a producer will sell to the
market price when its faces uncertain demand [23].
In our model, we adopt the conjectural variations ap-

proach to express the interaction among CSs. Since q(n) =
q(qn,q−n) = q(pn,p−n), we have:

dqn
dpn

=
∂qn
∂pn

+
∂qn
∂p−n

=
∂qn
∂pn

+

m=N∑

m=1,m �=n

εnm
∂pm
∂pn

. (9)

In our framework, the conjectural variation associated to CSn

is denoted by δn, and it is defined as the rate at which CSn
believes that the price of the other CSs changes if CSn’s own
changes once the cross-elasticities are known, that is

δn � ∂p−n

∂pn
�

m=N∑

m=1,m �=n

εnm
∂pm
pn

, (10)

where p−n denotes the price of other CSs than n. We note
that the conjectural variation is defined as a derivative of pn

since prices are the problem variables, as stated in (7), while
conjectural variations are mostly expressed as ∂q−n/∂qn [21].

D. Utilities’ oligopoly game based on differentiated products
Roughly speaking, most models of generators’ competition

are based on the general approach of defining a market
equilibrium as a set of prices and quantities that simultane-
ously maximize the participants’ benefits, while clearing the
market, i.e supply equals demand (see [24], [18] and references
therein). When oligopoly games are applied to power markets,
the usual approach is the standard static Cournot oligopoly
model. In this game, generators make their quantity decisions
simultaneously, and each generator behaves independently to
maximize its own profit. Generators communicate their power
forecast demand and the ISO (Independent System Operator)
puts a market clearing price. This spot market perspective is
beneficial for generators, but imposes the same market price
for all users.
Moreover, scenarios such as those we describe in this paper

are expected to happen frequently in the new smart grid, so a
different approach is necessary. Let us think about a wind or
photovoltaic power station. It generates power and does not
need any other utility company for selling its power to PEV
when its location is adequate. This also gives us an idea about
the heterogeneity of the types of generation companies, from
traditional hydroelectric or nuclear generation to biomass,
solar and wind power generation. Therefore a distributed
oligopoly game may better model the described scenario.
We present a game-theoretic model, named as the differen-

tiated product oligopoly game (DPOG), that tries to maximize
the generators’ profit: instead of agreeing on a market price,

we propose a negotiation of the prices among the generators
based on differentiated products. In other words, each genera-
tor gives a different price for the energy that is sold at its CS.
Later, users may also benefit form the DPOG by selecting the
more suitable CS. The N -players DPOG

{N , {pn}, {πn}
}

determines the prices at which the CSs sell their energy to
the PEVs, where the set N = {1, . . . , N} represents the N
charging stations; pn is the unitary price that the nth utility
charges (in €/kWh) and embodies the strategy of CSn; and
πn is the total profit obtained by the nth utility and can be
calculated by (4)

πn = pnqn − Cn, (11)

being qn the energy produced by CSn, and Cn the associated
costs given by (5). In the DPOG, each CS wants to maximize
its own revenue, what can be formally expressed as

max
pn

πn = pnqn − Cn, for all n ∈ N . (12)

The resulting game is noncooperative: although the players
(CSs) do not reach an explicit agreement in prices, if a Nash
equilibrium exists, this equilibrium is in itself an implicit
agreement among the CSs. The only information available to
player CSn is the strategies of the other charging stations, that
is, the price vector p−n = (p1, p2, . . . , pn−1, pn+1, . . . , pN ).
So no bargaining is previously agreed to the oligopoly game.
The objective with the DPOG is to reach an equilibrium, at

which no CS has anything to gain by changing his own strategy
(his price in this case) unilaterally [20]. This equilibrium,
also known as Nash equilibrium, is found by simultaneously
solving the following set of equations:

∂π1

∂p1
= 0

... (13)
∂πN

∂pN
= 0

The introduction of CV endows with a dynamic behaviour to
our non-dynamic utilities’ oligopoly game. Indeed, this game
is a one-shoot game, whose outcome is the Nash equilibrium
(p∗,q∗), and this equilibrium is a by-product of interactions
among the CSs until they reach the point at which no charging
station has incentive to modify its price.
With respect to the information flow, we may also consider

that CSs know the PEVs’ position and how much energy is
left. The fact that CSs know the PEVs’ location can induce
to think that they can take advantage of this information
and establish high prices to those PEVs that are in need of
charging, that is to say, they are very close to a CS and
the remaining battery is quite low. However, the game is an
imperfect information game, given that the costs and policy
prices of each utility are not known by the other utilities, so
it is our believe that they cannot freely raise the prices at the
risk of that PEVs go to some other CS.

E. Interpretation of the utilities’ oligopoly game outcome
The Nash equilibrium outcome of the utilities’ game can be

written as (p∗,q∗), where p∗ = (p∗1, p
∗
2, . . . , p

∗
N ), and q∗ =
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(q∗1 , q
∗
2 , . . . , q

∗
N ) are calculated once the prices p∗n are obtained

at equilibrium through the corresponding demand functions.
Therefore it may be possible that q∗n corresponding to a certain
CSn does not be equal to the sum of the quantities initially
demanded qn. If q0 =

∑K0

k=1 q
n
k represents the energy initially

demanded to CSn by K0 PEVs, there exist two possibilities:

• q∗n � q0. In this case the PEVs’ demand is guaranteed
since the produced energy quantity is larger than the total
energy required by the PEVs.

• q∗n � q0. At a first glance, CSn does not provide sufficient
energy to satisfy PEVs’ demand. However, PEVs ask
several CSs for energy, i.e they make a manyfold petition
to the surrounding CSs. As a result, the total energy
produced is several times the sum of the total energy
required, and with very high probability the CSs will
attend all the petitions once the PEVs have made their
choice of their best charging station.

Of course, some extra energy may be produced by some
CSs, but we cannot forget that not only the PEVs commu-
nicating with the CSs will recharge their batteries, but also
some additional capacity allow to serve possibly unexpected
vehicles.

IV. OPTIMIZING THE PEVS COST

The K PEVs seek for minimize the total price paid to the
utilities. Then, once the charging stations have announced their
prices to their corresponding PEVs, the users have to inde-
pendently solve their optimization problem, which consists in
selecting the CS n to minimize her cost, namely n∗k, and it is
formulated as

min
n

cnk = qnk pn = (q̄ckdkn + qchk )pn, (14)

for all n ∈ N , for all k = 1, . . . ,K.

In (14), the first term between brackets reflects the energy
demand, for user k, to get to CSn, and the second term
expresses unit price if charges the batteries at CSn.
However, PEVs must take into consideration whether they

have energy enough to reach the selected CS, that is, the
remaining battery qkr must be larger than the consumed battery
to get to the CSn, which implies that the condition

dkn < dth =
qrk
q̄ck

(15)

must hold, where dth expresses de maximum distance the PEV
can cover before running out of batteries. Thus they must
incorporate this restriction to the optimization problem and
the resulting charging station selection problem, for each user
k, is formulated as

min
n

cnk , for all n = 1, . . . , N, (16)

s.t. dkn < dth =
qrk
q̄ck

.
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Figure 5. Distribution of charging stations (CS) and electric vehicles (EV).
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V. CASE STUDY AND RESULTS

For the evaluation of the proposed framework the following
case study is considered. A given area of 20km×20km is
homogeneously served by 5 CSs, and 1350 EVs are assumed
to be randomly distributed over this area (Fig. 5) [25]. The
battery capacity is randomly chosen between 24kWh (e.g.
Nissan Leaf model) and 35kWh (e.g. Mini E model), and all
the EVs has a consumption of 1/6 kWh/km, an usual value
[]. The linear demand function of CSn, following (7), is qn =
An − Bnqn −

∑m=N
m �=n εnmqm, where An represents the total

energy requested to CSn (see Fig.6). Product differentiation is
considered to be due only to the different cost functions, which
have been taken from [19] and the corresponding coefficients
are reported in Table I, taking then cross-elasticities the same
value (in this case εnm = 0.5) for all CSs [22]. We compare
the OPDG prices with the prices calculated by using standard
Bertrand equilibrium for different values of the conjectural
variation δn = δ, for all CSn. Fig. 7 illustrates this comparison
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Charging station an[$/MW2h] bn[$/MWh] cn
1 0.04 2 0
2 0.0166 3.25 0
3 0.035 1.75 0
4 0.125 1 0
5 0.05 3 0

Table I
GENERATING COST COEFFICIENTS
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Figure 7. Average price per charging station for Bertrand equilibrium and
DPOG approaches, Bn = 2 and cross-elasticities εnm = 0.5 for all n.

in terms of the average price (in $/kWh) per CS, calculated
as 1

N

∑N=5
n=1 pn, where we observe that the price for DPOG

is higher than the price for the Bertrand equilibrium. We note
that the Bertrand equilibrium’s price is constant with δ, since
Bertrand equilibrum corresponds to the case of δ = 0. This
difference is more appreciable when the benefit per charging
station is compared for both cases, as it is shown in Fig. 8.
We also analyze the total cost charged to the users. The

payment made by the users is lower if they are allowed to
choose the CS as it is described in Section IV, compared to
the strategy of charging in the nearest CS, as it is shown in
Fig. 9, where k1 represents the percentage of users that obtain
a better (lower) payment if they do not choose to charge at the
nearest CS. It is observed that at least about 40% of the EVs
obtain a lower price (δ = 0.2) and, with respect to the charged
cost, a maximum average saving of 11.5% can be achieved,
for δ = 0.2.
The effect of the conjectural variation can be observed in

the above figures: price is increasing with δ, that is, a higher
expectation in the quantity q−n due to an increase in pn leads
to higher prices for all CSs, and also to lower benefits (higher
costs) for the EVs.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a framework for plug-in electric

vehicles in which the problem of charging station selection is
formulated and analyzed, and where positioning information
and wireless two-way communications play a key role. This
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Figure 8. Average benefit per charging station for Bertrand equilibrium and
DPOG approaches, Bn = 2 and cross-elasticities εnm = 0.5 for all n.
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Figure 9. Percentage of number of EV that obtain a better price with DOPG
with respect to the closest CS, represented by k1, and the average percentage
of cost saving per user of DOPG with respect to the closest CS, represented
by k2, Bn = 4 and cross-elasticities εnm = 0.5 for all n.

framework is based on a non-cooperative oligopoly game that
makes use of differentiation products theory to provide a Nash
equilibrium in prices and quantities. It is also considered that
conjectural variations model the expected reaction that the rest
of charging stations have with respect to variations in the
price of a given charging station. We have shown that the
proposed DPOG outperforms the Bertrand oligopoly scheme
for the participating charging stations, and electric vehicles
benefits from the DPOG when they select the charging station
according to the proposed criteria.
The next steps are the analytical study of how cross-

elasticities impact the performance of the proposed DPOG,
and conjectural variations consistency analysis. The adoption
of EV driving patterns and different EV area distributions,
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such as urban EV distribution, are also considered for future
case studies.
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