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Abstract—Recently, there has been an increasing interest in
GNSS-based safety and liability applications. These applications,
which are often associated to urban environments or in general to
vehicular applications, have very stringent requirements in terms
of accuracy, continuity and integrity of the provided position
solution. In this paper, we present simple quickest threat detectors
for being used in low-cost GNSS receivers. The aim is to detect
the presence of interference and multipath as soon as posible in
order to improve GNSS integrity.

I. INTRODUCTION

In the past decade, Global Navigation Satellites Systems
(GNSS) have played a prominent role in the development of
urban navigation applications and new location-based services
(LBS) [1]. The constant growth of these applications and
services has been accompanied by an increase of requirements
in terms of accuracy, continuity and more importantly, integrity
of the position solution. In this context, integrity refers to the
ability of the user receiver to guarantee the quality and trust of
the received signal, in such a way that critical or commercial
applications can be safely operated.

Recently, a plethora of vehicular GNSS-based applications
have appeared involving safety of life features, such as the
system for avoiding pedestrian traffic accidents proposed in
[2], or involving liability critical applications like automatic
road user charging or pay-per-use insurance [3], [4]. In these
applications, it is of paramount importance to promptly detect
any possible anomaly or misleading behaviour that could
affect the received GNSS signal. Otherwise, we could be
endangering the safety and trust of the end-user, thus causing
a major trouble.

In the past years, different contributions for providing GNSS
integrity have appeared. Most of them propose the use of
external information like map-matching for identifying local
threats (e.g. known interference sources or signal blocking
obstacles) [5], external sensors for obtaining redundant in-
formation [6], or fisheye cameras to obtain a sky plot and
determine the geometrical distribution of satellites in view [7].
Nevertheless, the use of external aid needs prior information
about the user environment or external hardware, which is not
always available in mass-market GNSS receivers (i.e. those
mostly used for vehicular applications).

Apart from the above considerations, traditional GNSS
integrity algorithms are not capable of providing an accurate
and reliable position solution in urban environments (i.e. those

where vehicular applications are mainly present), due to local
effects like multipath, Non-Line-Of-Sight (NLOS) propagation
and radio frequency interference. While significant research
efforts have been devoted to the detection of these threats,
most of the existing techniques still rely on classical detec-
tion schemes. This means that their performance metrics are
typically in the form of probability of detection and false
alarm, thus disregarding the temporal dimension (i.e. time-to-
detect), which is indeed of paramount importance for integrity
applications. It is for this reason that we propose the adoption
of the so-called quickest detection framework, which targets
the minimisation of the detection delay while guaranteeing a
certain detection performance [8].

Hence, the distinctive point of our contribution is twofold:
(i) we provide a quickest detection approach, which will
exclude wrong measurements from the positioning calculation
quicker than classical ones; (ii) we provide an additional level
of integrity dealing with local effects (i.e. signal level integrity)
without using any external aid. We already addressed this
problem for the case of multi-antenna GNSS receivers in
[9] and [10], and for single-antenna receivers in [8]. In this
paper, though, we focus instead on low-cost single-antenna
GNSS receivers such as those used in smartphones, which have
low computational capabilities and are presenting an increase
of use for vehicular applications. In these cases, it may be
difficult to compute the metrics proposed in [8] due to the
low computational capability of the receivers, and then simple
metrics are needed.

The rest of this paper is organised as follows. Section
II introduces the signal model and Section III presents the
quickest detectors for interference and multipath, presenting
numerical results to show the performance of the proposed
detection techniques. Finally, Section IV concludes the paper.

II. SIGNAL MODEL

Let us consider a sequence of K observations x
.
=

[x(0), x(1), . . . , x(v), . . . , x(K − 1)]
T , where v is the time

instant at which an integrity threat appears (i.e. unknown
change time). Consequently, it is assumed that before v (i.e. at
hypothesis H0) the observation x(n) follows a given statistical
distribution, whereas after the change (i.e. at hypothesis H1)
it follows a different one:

H0 : x(n) ∼ f0(x(n)), n < v

H1 : x(n) ∼ f1(x(n)), n ≥ v
(1)



Based on these premises, quickest detection aims at finding
the strategy that minimises the detection delay (i.e. τ ), while
keeping the mean time between false alarms (i.e. T ) larger
than a conveniently set value. For this purpose, the CUSUM
algorithm was proposed, which is based on a very important
concept in statistics, namely the logarithm of the likelihood
ratio:

LLR(n)
.
= ln

f1(x)

f0(x)
(2)

and referred to as the log-likelihood ratio (LLR). For the
sake of clarity we have omitted the time index n from the
independent random variables x, keeping in mind that each
variable x corresponds to a given time instant (i.e. x(n)).

The CUSUM algorithm is an efficient statistical change
detection algorithm defined as the following decision rule:

g(n) = (g(n− 1) + LLR(n))
+ ≥ h (3)

with g(0) = 0 and (x)+ = max(0, x). It is known that
the CUSUM minimises τ among all detection algorithms that
satisfy T > Nfa, with the following optimal results that allows
us to find the threshold h that guarantees a given false alarm
rate Nfa [8]:

T ≥ eh = Nfa

τ ≤ h
K(f1,f0)

(4)

where K(f1, f0)
.
= E1 [LLR(n)] is the Kullback divergence.

III. QUICKEST DETECTION OF LOCAL THREATS

This section describes the application of the CUSUM al-
gorithm to GNSS integrity monitoring. To do so, we use the
CUSUM algorithm for interference and multipath detection,
which are two of the most relevant and common threats in
urban GNSS environments. We show two simple metrics to be
used in low computational capabilities receivers. These metrics
are the estimation of the received power, for interference de-
tection, and the code discriminator output (DLL) for multipath
detection. The main difference between these metics and those
proposed in [8] is the simplicity of the ones with respect to the
others. This is so, because the estimation of the received power
can be calculated easily from the received samples (i.e. squared
modulus). In contrast to the kurtosis calculation, which needs
the computation of the 4-th central moment, and then is more
computational expensive. On the other hand, for the multipath
metric in [8] we need a multi-correlator receiver, which is not
often the case of low-cost receivers, in contrast to the DLL,
which is implemented in any GNSS receiver.

A. CASE 1: Quickest interference detection

This section proposes a quickest detection framework for
detecting interferences in GNSS, based on the detection of a
change in the power of the received signal. We know that in
the absence of interference (i.e. under H0), the received signal
will be dominated by noise, since the GNSS signal remains
under the noise floor, whereas in the presence of interference
(i.e. under H1), the received signal will be dominated by
the interference. Then the detection principle is based on the

fact that in the absence of interference, the estimated power
should be around the noise power within the corresponding
bandwidth. On the other hand, in the presence of some
interference, the estimated power should significantly deviate
from that noise power.

Based on the above considerations, let us define the esti-
mated receiver power P̂r(m) at snapshot m as follows

P̂r(m)
.
=

1

N

N∑
i=1

‖r (i+mN −N)‖2 (5)

with each snapshot including N samples of the received signal
r(n). It can be easily probed that in absence of interference
‖r(n)‖2 follows a central χ2 distribution with two degrees of
freedom. On the other hand, in the presence of interference it
follows a non-central χ2 with two degrees of freedom and non-
central parameter related to the interference power. Therefore,
if we define the metric based on the received power estimation
as follows

xr(m)
.
=
P̂r(m)

2σ2
w

(6)

with σ2
w the noise power (which may be estimated), we

will obtain that the metric equals to one in the absence of
interference, and it departs form one otherwise. This metric,
by the central limit theorem, can be modelled as a Gaussian
distribution with mean and variance related by the noise and
interference power. Hence, as the statistical distribution of
this metric is completely defined, we will be able to use the
CUSUM algorithm as a Gaussian mean and variance change
detector.

Now, we can use the central limit theorem (CLT) to ap-
proximate the statistical distribution of xr(m) as a Gaussian
distribution. The CLT stands that the sum of N i.i.d. random
variables with finite mean and variance approaches a Gaussian
distribution when N is large enough. Therefore, we can write
the following hypotheses:

H0 : xr(m) ∼ N
(
µ
(r)
0 , σ2(r)

0

)
, m < v

H1 : xr(m) ∼ N
(
µ
(r)
1 , σ2(r)

1

)
, m ≥ v

(7)

with expressions for the mean and variance derived from the
CLT as follows:

µ
(r)
0 =

σ2
w

2σ2
w

· E
[
χ2
2

]
= 1

σ2(r)

0 =
1

N

(
σ2
w

2σ2
w

)2

· var
[
χ2
2

]
=

1

N

µ
(r)
1 =

σ2
w

2σ2
w

· E
[
χ2
2(λ)

]
= (1 + INR)

σ2(r)

1 =
1

N

(
σ2
w

2σ2
w

)2

· var
[
χ2
2(λ)

]
=

1

N
(1 + 2INR)

(8)

with INR the interference-to-noise ratio and λ = 2 · INR the
non-central parameter.

This is shown in Fig. 1, where the distribution of the pro-
posed metric is shown for the cases of absence and presence of
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Fig. 1: Statistical characterisation for the power-based detection. Comparison
between simulated (i.e. histogram) and theoretical PDF under H0 (up) and
H1 (down).

interference. We have used a noise power σ2
w = 2, N = 1e4,

1e5 Monte-Carlo runs and for the interference case we have
simulated a continuous wave (CW) with INR = 20dB. We can
notice the Gaussian distribution for both hypotheses. On the
other hand, we can see the departure between the mean and
variance under H0 (i.e. upper plot) and H1 (i.e. lower plot).
Indeed, the mean under H0 should be close to one, whereas
for the interference case the mean should be around the sum
between the noise and interference power (see (8)).

From (7) we have statistically characterised the power
estimate metric. This characterisation includes the mean and
variance before and after the change, which are completely
known from (8). Therefore, using the power estimation metric
(i.e. xr(m)), we can fully characterise the log-likelihood ratio,
and then use the CUSUM algorithm for detecting both changes
in the mean and variance. This gives rise to the following LLR:

LLRr(m) = ln

(
σ
(r)
0

σ
(r)
1

)
+

(
xr(m)− µ(r)

0

)2
2σ2(r)

0

−

(
xr(m)− µ(r)

1

)2
2σ2(r)

1

. (9)

Both variance and mean after change depend on the INR
of the interference. Thus, as in the interference case in [8], a
way to proceed is to fix a certain value for these parameters
according to the minimum INR that one expects to detect.
Thereby, a minimum change detection is fixed allowing the
detection of any larger change caused by larger INR. Hence,
we can make use of the CUSUM algorithm as follows

g(r)(m) =
(
g(r)(m− 1) + LLRr(m)

)+
≥ hr (10)

leading to the following performance in terms of time between
false alarms and detection delay

T r ≥ ehr

τ r ≤ hr

Kr(f1,f0)

(11)
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Fig. 2: CUSUM performance for the power-based method as a function of
detection threshold. Detection delay for a CW with INR = −20dB (up) and
false alarm rate in samples (down).

with Kr(f1, f0) = ln

(
σ
(r)
0

σ
(r)
1

)
+

(
µ
(r)
1 −µ(r)

0

)2

2σ2(r)

0

.

These bounds are presented in Fig. 2 and compared with
simulated results. To do so, we use σ2

w = 2, N = 1e4 and 1e5
Monte-Carlo runs. In addition, for the detection delay case we
fix INR = −20dB. This low value is selected in order to show
representative results, otherwise the detection delay would be
one sample. The lower plot shows higher experimental samples
between false alarms than the lower bound in (11). Therefore,
the lower bound for the false alarm rate allows us to set
a threshold hr assuring certain desired false alarm rate. In
addition, the upper plot shows similar values for the simulated
results and theoretical ones.

Finally, it is worth to note that in this case Kr(f1, f0) ≈ 0.5,
whereas for the kurtosis metric proposed in [8] we would
obtain Kkurt(f1, f0) ≈ 2.6e-11 (i.e. calculating the kurtosis
parameters with the simulation parameters used here). Hence,
the interference metric proposed in this work outperforms the
kurtosis metric proposed in [8] in terms of detection delay.
However, in order to use the metric proposed here (i.e. xr(m))
we must estimate the noise power previously, and then we
are subject to the precision of the noise power estimator.
Nevertheless, if we have a good estimation of the noise power,
we will be able to eventually detect Gaussian wide-band
interferences, which cannot be detected by the kurtosis metric
because they will provide the same kurtosis as in the absence
of interference (i.e. they are Gaussian).

B. CASE 2: Quickest multipath detection

Here, we present an application of quickest detection for
detecting multipath in GNSS. The problem of multipath de-
tection must be carried out at the acquisition and/or tracking
stage, where measurements such as the estimated C/N0, the
code discriminator output (i.e. DLL) and the shape of the
correlation curve fluctuates with the presence of NLOS and
multipath [1]. Next, we show the application of the CUSUM
algorithm for the DLL, which is a measurement available at
the tracking loop of any GNSS receiver.



We know that under benign conditions (i.e. H0), the DLL
is close to zero, with all variations due to the noise and to
the small corrections needed to track the code dynamics (i.e.
user movement). However, when a single multipath ray is
present (i.e. H1) we see how the DLL output presents a spike
in order to compensate the shift in the code position due to
multipath. Afterwards, the DLL reverts to zero. Nevertheless,
as the multipath conditions varies in practice, the DLL output
will present different spikes along the period when multipath
is present, which is translated to an increase of the variance
of the DLL. Therefore, this is equivalent to a change on the
DLL variance.

The DLL is calculated making use of the early and late
correlators, which can be assumed to be Gaussian distributed
since they are obtained from averaging Gaussian variables
(i.e. correlators), and then we can formulate the problem of
quickest multipath detection as follows:

H0 : xd(k) ∼ N
(
µ
(d)
0 , σ2(d)

0

)
, k < v

H1 : xd(k) ∼ N
(
µ
(d)
0 , σ2(d)

1

)
, k ≥ v

(12)

This is shown in Fig. 3, which shows the histogram of
the DLL output values for data captured with a real GNSS
receiver under the framework of the Integrity GNSS Receiver
(iGNSSrx) project, funded by the European Commission.
These data were gathered during 80 s by a moving vehicle
in a dense urban environment, in London’s (UK) downtown.
The vehicle was under benign condition the first 40 s, and
then it changed to harsh conditions until the end of the data
record. We discriminate between benign and harsh conditions
with the aid of a truth reference for calculating the position
error. For the data under benign conditions we obtain a mean
positioning error of 2m, whereas for the data under harsh
conditions we obtain a mean positioning error of 50m. In the
upper plot of Fig. 3 we present the histogram under benign
conditions, where we see the Gaussianity of the DLL output
with a mean close to 0 and low variance corresponding to
variations of 0.015 chips (i.e. 1e-5) due to the noise and
code dynamics. On the other hand, in the lower plot, we
present the histogram under harsh conditions. We see how
the histogram fits a Gaussian distribution too. In this case, the
mean still is close to 0, but a much greater variance than under
H0. The presented results correspond to one of the satellites
in view. This is so in order to clarify the explanation, but
the Gaussianity of the DLL output is maintained for all the
satellites in view, and then the following discussion is valid
regardeless of the tested satellite.

Hence, we see that the DLL follows a Gaussian distribution
with known mean before and after change (i.e. 0) but unknown
a priori variance before and after the change. Then, in order
to use the CUSUM algorithm we propose the following
configuration:

• µ
(d)
0 : We can fix it to 0 or calibrate it:

µ
(d)
0 = κ ≈ 0 (13)
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Fig. 3: Statistical characterisation of DLL output with real data captured in
London downtown under benign conditions (up) and under harsh conditions
(down).

• σ2(d)

0 : This value is unknown a priori because it’s difficult
to have perfect knowledge of the actual variance, even
knowing the expression for the variance of the DLL. This
is so because it ultimately will depend on the multipath
parameters, which will be random and unknown. Hence,
we propose to fix the variance under benign conditions
according to the maximum allowable variations on the
DLL values under H0, as follows:

σ2(d)

0
.
=

(
(∆0)max

3

)2

(14)

with (∆0)max the maximum allowable variations under
H0. This is so because we know that for a Gaussian
distribution the 99.86% of the values are comprised in
the interval µ ± 3σ. For example, in our case we see
that the DLL under H0 takes variations of ±0.01 chips,
which for GPS are equivalent to variations of ±3m on
the estimated pseudo-range. Thus, a proper consideration
for the variations of the DLL output under H0 might be
[3-10]m, and then larger variations are considered to be
due to the presence of multipath. With this consideration,
the DLL variation is between 0.01 and 0.034 chips, and
then we may fix the maximum allowable variations to
(∆0)max = 0.04 chips. Doing so we obtain a variance
before the change equal to σ2(d)

0 = 1.78e-4.
• σ2(d)

1 : Similarly as for the variance before change, we
fix the variance under harsh conditions as the minimum
detectable variability on the DLL due to multipath as
follows:

σ2(d)

1
.
=

(
(∆1)min

3

)2

(15)

with (∆1)min the minimum detectable variation on the
DLL under H1. For instance, in our case, a suitable value
might be a variation equivalent to ±0.07 chips (i.e. 20m),
which results in σ2(d)

1 = 5.5e-4.
Therefore, with this configuration we are able to use the

CUSUM algorithm for a Gaussian variance change, which has
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Fig. 4: Statistical characterisation of DLL with real data captured in London
downtown under benign conditions (up) and under harsh conditions (down).

the following LLR:

LLRd(k) = ln

(
σ
(d)
0

σ
(d)
1

)
+

(
xd(k)− µ(d)

0

)2 (
σ2(d)

1 − σ2(d)

0

)
2σ2(d)

0 σ2(d)

1
(16)

with µ
(d)
0 , σ(d)

0 , σ(d)
1 defined as in (13)-(15), and xd(k) the

DLL output at the k-th post-correlation snapshot. Thereby, we
can use the following decision rule:

g(d)(k) =
(
g(d)(k − 1) + LLRd(k)

)+
≥ hd (17)

leading to the next performance

T d ≥ ehd

τd ≤ hd

Kd(f1,f0)

(18)

with Kd(f1, f0) = ln

(
σ
(d)
0

σ
(d)
1

)
+

σ2(d)

1

σ2(d)

0

.

Here, we show the obtained DLL and the CUSUM evolution
for the real data analysed in Fig. 3. This is shown in Fig. 4,
where we see in the upper plot how the DLL presents a change
in the variance just when multipath appears (i.e. second 40).
This is promptly detected by the CUSUM, as it is shown in the
lower plot, which shows how the CUSUM remains close to 0
(except some spikes due to the code dynamics) until it starts
drifting upward at second 40 and it crosses the threshold. The
threshold is set to fix a false alarm rate of 1h, which with a
sampling rate of 10MHz and snapshot time of 20ms becomes
equal to hd = 12 (black dashed line).

Finally, it is worth to mention that in this case we only need
the early and late correlators for computing the DLL output,
which are available on all GNSS receivers. On the other hand,
for the SAM metric proposed in [8] we need the whole corre-
lation curve (i.e. at least 5 correlation points), which are not
available in all GNSS receivers (i.e. only the multi-correlators
GNSS receivers). Hence, the multipath metric suggested here
does not require a specific GNSS receiver and outperforms
in terms of computation time the metric proposed in [8].
However, as a drawback, the suggested metric here is not able

to discriminate between LOS and NLOS conditions, in contrast
to the SAM metric. Nevertheless, for integrity monitoring we
de not need to discriminate between these conditions, what is
important is to detect the presence of multipath, which as we
have shown is posible with the DLL.

IV. CONCLUSION

This paper presents a quickest detection framework for
threat detection with the aim of improving integrity in GNSS,
in order to be applied in emergent vehicular applications.
Two different cases have been presented: quickest interference
detection and multipath detection, both validated with sim-
ulated results and real measurements gathered by a vehicle
in a urban environment, respectively. For the interference
detection, we deal with a completely known LLR, whereas for
multipath detection we deal with an incompletely known LLR
(i.e. unknown variance), and both situations can be handled
by the CUSUM algorithm. We proposed two methods that
have been shown to outperform previous quickest detectors
for interference and multipath in GNSS in terms of real-
time capability. Moreover, the interference detection method
provides a faster detection than previous approaches. This is so
because the proposed metric is more sensible to interferences
than other metrics, and then for the same interference power
it presents a larger change. However, in order to calculate the
metric proposed here we have to estimate the noise power. On
the other hand, the multipath detection method can be applied
to any GNSS receiver because it does not need any high-end or
additional feature. Results of the proposed approaches show
their suitability to be used in applications involving GNSS
signal integrity real-time monitoring (i.e. safety of life and
liability critical vehicular applications).
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