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Abstract-Multipath mitigation has attracted the attention of many 
researchers, thus leading to outstanding contributions in the past years. In 
contrast, multipath detection has not benefited that much. It has remained 
in background, with most of the current state of the art still relying on 
classical detection techniques. In this paper, we take a leap forward in 
multipath detection, and we propose a CUSUM-based sequential change 
detection algorithm. The aim is to focus on quickest detection techniques 
in order to detect the presence of multi path and to provide integrity to 
GNSS receivers. We will focus herein on multi-antenna GNSS receivers, 
with both single and multi correlator architectures, and numerical results 
wiU be used to validate the proposed technique. 

I. INTRODUCTION 
With the widespread deployment of Global Navigation Satellite 

Systems (GNSS), one of the major challenges to be solved is the 
provision of integrity to users beyond the civil aviation community, 
where this feature is already a well-established performance criterion 
[1]. Integrity refers to the ability of the user receiver to guarantee the 
quality and trust of the received signal, in such a way that critical or 
commercial applications can be safely operated. 

Position integrity is typically provided in civil aviation by Receiver 
Autonomous Integrity Monitoring (RAIM) algorithms and Satellite 
Based Augmentation Systems (SBAS). However, such methods need 
requirements that cannot be fulfilled in road and urban environments, 
due to effects like multipath, Non-Line-Of-Sight (NLOS) propagation 
and interference signals. This implies that the signal integrity, which 
in civil aviation is almost translated into position integrity, can hardly 
be used to ensure position integrity in terrestrial environments [2]. 
It is for this reason that signal integrity is actually a concern within 
the GNSS community, motivated by the widespread deployment of 
terrestrial GNSS receivers and the emergence of new GNSS-based 
applications and services [3]. 

In this paper, we will concentrate on multipath and NLOS as 
the major impairments that can threat the integrity of mass-market 
users (mainly, those using GNSS receivers in urban environments). 
Significant efforts have been made to mitigate multi path effects, often 
leaving multi path detection in background. However, multipath detec­
tion is actually as important, or even more important than multi path 
mitigation. The reason is that before using mitigation techniques, we 
need to know whether multi path is present or not. Otherwise, the 
effects of mitigation techniques could seriously damage the GNSS 
signal of interest. Most existing multipath detection methods operate 
at observable level, such as [4] which is based on pseudoranges 
and carrier phase measurements, or [5], [6], where map models are 
used to describe potential environment obstacles of causing multipath 
reflections. 

Methods at observable level are not able to cope with short 
multipath delays, and those using maps need prior information 
about the user environment. Unfortunately, close multipath cannot 
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be ignored from an integrity point of view, since it strongly affects 
GNSS signals. Moreover, we cannot rely on having access to external 
information, such as map models, since this information is not always 
available. Consequently, there is a need of stand-alone multipath 
detectors in order to provide flexibility, control, and reliability in 
handling multi path, even with short delays. 

Recently, this kind of detectors have been addressed in [7] and [8]. 
These contributions adopt a classic detection framework, in which the 
goal is to minimize the miss probability (or maximize the detection 
probability) subject to constrains on the false alarm rate. A common 
feature of these schemes is that the detection is carried out in a 
block-wise manner, where a batch of samples is processed at a 
time. In this paper, we adopt an alternative point of view of the 
detection problem. Besides detection probability, detection delay is 
also a critical performance metric for integrity monitoring purposes, 
since a small detection delay will allow to detect quickly the threats. 
Focusing on the detection delay, we will be able to provide a level 
of signal integrity that could not be achieved by means of classical 
detection techniques. Obviously, the desire to reduce the detection 
delay must be balanced with a certain false alarm constraint. 

The quickest detection framework has been extensively studied in 
the past decades. One of the most popular techniques is the CUSUM 
algorithm [9], which is a sequential method aimed at minimizing 
the detection delay subject to a false alarm constraint. The CUSUM 
algorithm has been applied to automatic control since a long time 
ago, and more recently, to multi-antenna receivers for signal detection 
[10], and to spectrum sensing in cognitive radio [11]. Nevertheless, 
to the best of the authors' knowledge, the CUSUM has not been used 
yet for multipath detection and GNSS integrity monitoring. 

Based on this observation, the goal of this work is to bridge the gap 
between quickest detection theory and multipath detection methods. 
By doing so, we will able to provide a sequential detection framework 
for multipath detection with aim of improving the GNSS integrity. 
In [12] a multipath detection method for a single-correlation multi­
antenna GNSS receiver was proposed. This work moves one step 
further and considers multi-correlation multi-antenna schemes, thus 
covering both possibilities of GNSS receiver architectures. 

The rest of this paper is organized as follows. Section II introduces 
the signal model and Section III describes the CUSUM algorithm and 
the proposed metrics for multipath detection. In Section IV, numerical 
results are presented to evaluate the proposed detection techniques 
and compare them with present multipath detection methods. Finally, 
Section V concludes the paper. 

II. SIGNAL MODEL 

Let us consider an antenna array composed of a uniform linear 
array (ULA) with Na antenna elements equi-spaced at a distance d. 
For an incident signal with direction of arrival (DoA) e, the array 
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Fig. 1. Scenario representing the presence of multipath in the multi-correlator 
receiver architecture used in this paper. 

response or steering vector has the following form: 

s (B) = [1 ej27r(dl)..)cos(O) ••• ej(Na-1)27r(dl)..)COS(O)] T (1) 

where A is the signal wavelength. The noise at each antenna is 
modeled as an i.i.d zero-mean complex Gaussian random process 
with variance a�, and uncorrelated both spatially and temporally. 
Fig. 1 shows the situation when a GNSS signal arrives with DoA B. 
at the antenna array and a multipath ray is present with DoA Bmp. 

For the multipath detection, the signal processing is carried out at 
the GNSS receiver correlator output, since it is here where the GNSS 
signal and multipath effects actually become visible. In this paper, 
we operate at the output of a bank of correlators with a post detection 
integration time (PDI), equal to one code period (e.g. 1 ms in the 
case of GPS L1 CIA signals). We consider a total of L correlation 
outputs per array arm, which is possible due to the multi-correlation 
architecture in Fig. 

1. With this scheme, the following (Na x L) 
received data matrix can be obtained: 

Yk == [y(l ; k) , · · ·  , y(L; k)] (2) 

where y (l; k) is the (Na x 1) vector with the l-th correlator output at 
different antennas at the k-th PDI period. Depending on the presence 
or absence of multipath, the two following hypotheses can be written: 

1io : y (l; k) = Cto(l) . s(B.) + n(l) 

1i1 : y (l; k) = Cto(l) . s(B.) + Ct1(l) . s(Bmp) + n(l) 
(3) 

where the complex amplitude Ctj with j = {O, I}, corresponds to the 
LOS and multipath post-correlation outputs components, respectively. 
Finally, n(l; k) is the noise vector whose components are the post­
correlation zero-mean complex Gaussian noise with variance a2• 
Without loss of generality only one multipath ray is assumed, which is 
the minimum number of rays needed to differentiate both hypothesis. 

Typically, the correlator output samples are taken on either side of 
the maximum correlation peak:. That is to say, the first (L - 1)/2 
correlation samples on the left hand side of the correlation peak: 
correspond to the so-called early samples; the correlation sample 
aligned with the estimated time-delay of the received signal is referred 
to as the prompt sample (P == (L + 1)/2); and the late samples are 
those corresponding to the last (L -1)/2 correlation samples on 
the right hand side of the correlation peak:. This is the case of a 
multi-correlator receiver architecture, and we will assume that the 
correlation points are uniformly distributed in the range of ±1 chip 
period. For the single-correlator receiver architecture case, a single 
correlator output sample is available, corresponding to the prompt 
correlator. 

III. MULTIPATH DETECTION FOR INTEGRITY MONITORING 
A. Fundamentals of quickest detection 

For the prompt detection of integrity threats, it is essential to 
formulate the problem under the framework of online or sequential 
change detection [9]. To do so, let us first consider a set of K observa­
tions x == [x(0),x(1), ... ,x(v),x(v+1), ... ,x(K-1W, where 
v is the time instant at which the multipath appears. Consequently, it 
is assumed that before v (Le. at hypothesis 1io) the observation x(n) 
follows a statistical distribution fo(x(n)) for all n < v, whereas after 
v (Le. at hypothesis 1i1) it follows a different distribution JI(x(n)) 
for all n � v. Based on these premises, sequential change detec�n 
aims at finding the strategy that minimizes the detection delay Tl, 
while keeping the mean time between false alarms To larger than a 
conveniently set value Nfa. 

The CUSUM algorithm is a simple but efficient sequential change 
detection algorithm based on the log likelihood ratio (LLR) of the 
densities before and after the change [9]. That is, LLR(x(n)) == 
In (JI(x(n))/ fo(x(n))), and it is defined as a decision test compar­
ing the following metric 

g(n + 1) = [g(n) + LLR(x(n + 1))]+ (4) 

for some threshold h, where [x]+ == max {O, x}. Hence, it is possible 
to compute g(n) recursively by setting g(O) = 0, and then an alarm 
is raised whenever g( n + 1) > h. By doing so, it is known that the 
CUSUM algorithm minimizes T1 among all detection algorithms that 
satisfy To � Nja. The following approximation for To allows us to 
find the threshold h that guarantees a given false alarm rate Nfa: 

-
h To � e = Nfa. (5) 

Letting Eo['] and E1 [ · ] denote the expectation under fo and JI, 
respectively, the principle underlying (4) is that, before the change, 
Eo [LLR(x(n))] < 0, so that g(n) remains close to zero; in contrast, 
after the change, g( n) starts drifting upward with a positive mean 
E1 [LLR(x(n))] until it ultimately crosses the threshold h. 

In general, when the LLR is not completely known (as it is the case 
in the problem under study), the LLR can be replaced by any other 
function of the signal samples x(n), p(n) == q(x(n)), with negative 
mean before the change, and positive mean after the change. That is, 

g(n + 1) = [g(n) + p(n)]+ . (6) 

In this case, the detection delay is no longer guaranteed to be 
optimal. Nevertheless, it is still a very good candidate provided that 
an appropriate function is chosen satisfying the following condition 
[9]: 

- h T1 rv 

E1 [p(n)]' 
(7) 

where So > 0 is the nonzero root of the equation Eo [es.p(n)] = 1. 

B. Multi-correlation multi-antenna (Me-MA) integrity metric 

In order to derive a metric for multipath detection, we will consider 
the covariance matrix of Y k. which can be estimated as [13]: 

A • A rYCr� W = COY [Y k] = Ryy - -----p;-
with the following definitions, 

R ...:....!yyH yy -

L 
p. . 1 H e = zreerce 

. 1y H rye = Z rcc 

(8) 

(9) 

(10) 



and ree � [Ree( Tl), ... ,Ree( TL )] , where Ree( Ti) is the autocorre­
lation function of the GNSS code evaluated at the time delay Ti. For 
the sake of clarity the index k has been omitted, keeping in mind 
that each data matrix corresponds to a given integration interval. 

From [8] it is known that W is a diagonal matrix under 1io, 
whereas under 1il, it departs from diagonal due to the presence of 
correlated signals among antenna elements. Thereby, the following 
test statistic is proposed with the aim of measuring to which extent 
W departs from a diagonal matrix: 

(11) 

where .\i(k) is the i-th eigenvalue associated to the estimated covari­
ance matrix W at PDI k. This metric, in the case of a multipath-free 
scenario, follows a chi-squared distribution with NJ - 1 degrees of 
freedom. Therefore, the following hypothesis testing can be defined: 

1io Eo [Pd(k)] = N� - 1, 
1il : El [Pd(k)] > N� - 1. 

(12) 

Note that under 1il the exact mean is unknown since h is not 
completely specified (i.e. it depends on the multipath parameters, 
which will be unknown in practice). Hence, with the aim of being 
able to use the detection metric Pd(k) in the CUSUM algorithm, we 
propose the following modified metric: 

Pme(k) � Pd(k) - p. (13) 

In this way, by selecting a proper p, the mean of pme before 
change will be negative, but it will become positive after the change. 
Specifically, denoting the mean after change by J.11 > N� - 1: 

1io Eo [Pme(k)] = N� - 1 - p < 0, 

1il El [Pme(k)] = J.11 - P > O. 
(14) 

The choice of the offset p should be large enough to assure a 
negative mean before change and provide a certain false alarm rate 
(FAR). But at the same time, p should be small enough to fulfill the 
inequality of hypothesis 1il in (14) (i.e. to maintain a positive mean 
after change for the test metric). From (7) and using pme we are 
able to adjust the FAR through the nonzero root, So, of the following 
equation: 

Eo [e··Pd(k)] e-s,p = 1. (15) 

We also know that under 1io, Pd(k) is a chi-square variable with 
N� -1 degrees of freedom. Then, the characteristic function of Pd (k ) 
is given by: 

(16) 

and thus So turns out to be the nonzero root of the following equation: 

(17) 

which can be solved numerically. The solution is a function of p and 
Na, with the latter being related to the degrees of freedom of the 
chi-square variable (i.e. N� - 1). 

Fig. 2 shows the nonzero root of (17) as a function of the ratio 
p/N� for the case of Na = 3. First notice that for p < N�, we have 
So = 0 for all p, which is coherent inasmuch as from (14), p must be 
larger than N� to get a negative mean under 1io. Next, it is observed 
that So increases when the bias p is larger than N� ,until it reaches a 
saturation level. Finally, there is a limit on p from which for higher 
values the above equation does not converge to a numerical solution. 

Fig. 2. Nonzero root of (17), So, versus the ratio of the bias p between N�. 

This value is the limit of the X -axis in Fig. 2, which is around 6.3, 
and further values are not shown since they do not provide a valid 
solution. Later on, it will be shown the effects on the FAR of taking 
p within this region. 

C. Single-correlation multi-antenna (SC-MA) integrity metric 

For the single-correlation case, we have not enough correlation 
points to form a precise estimation of the covariance matrix in (8), 
and thus the proposed detection metric in Section III-B cannot be 
applied. However, a detection metric for single-correlation receiver 
architectures is of practical interest, and it will allows us to cover 
any type of multi-antenna GNSS receiver architecture. To do so, we 
propose a metric based on the use of the prompt correlator output 
at each antenna (i.e. y(P; k) , where the contribution of the known 
DOA of the GNSS signal of interest is removed as follows: z(k) � 
y(P; k) 8 s*(8.) with 8 the Schur-Hadamard product. 

Thereby, based on z(k), the following scalar observations are 
defined to implement the CUSUM algorithm [12]: 

1 Na 

Pse(k) � Na _ 1 L ([z(k)]n - [Z(k)]I) (18) 
n=2 

where [z(k)]j indicates the j-th component of z(k). This expression 
denotes the average of the differences between antenna pairs, once the 
LOS steering vector has been removed. In the absence of multipath, 
the result is expected to be negligible, since [z(k)]n is the same for 
all antennas. However, in the presence of multipath it contains the 
different contributions of multi path in different antennas, and thus 
multipath becomes detectable. 

In contrast to [12], the problem is formulated here using complex 
Gaussian distributions for Pse(k), which avoids the need of two 
parallel CUSUM algorithms working on the real and imaginary parts 
of the test metric. As in the case of multi-correlation detection, the 
distribution at 1il is not completely known, specifically its mean is 
unknown. Hence, the solution here is to replace the unknown param­
eter by its maximum likelihood estimate, leading to the generalized 
likelihood ratio (GLR) CUSUM algorithm [9]. For a change in the 
mean of an independent complex Gaussian sequence,which is our 
case, it leads to: 

·th A' n' 1 ",k ( .) th . Iik lih d 
. 

WI 1 = k
-n+l L..i=n pse t, e maxlffiurn e 00 estlIDate 

of the complex mean after the change. 
Note that to apply the above method, we need to know the 

DOA of the GNSS signal of interest, 8.. It is needed in order to 
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Fig. 3. Sensitivity of J.L1 as a function of SMR at 0.05 chips delay (up) and 
multipath delay at SMR = 6 dB (down) for CINO = 45 dB-Hz. 

generate s* (Os) and compute the vector z(k) in (IS). However, 
this requirement is feasible in GNSS since the position of visible 
satellites is already computed within a GNSS receiver. With some 
further information on the attitude of the receiver, we can obtain the 
satellite DOA. 

IV. SIMULATION RESULTS 
In this section, different experiments are presented with the aim 

of analyzing the proposed metrics in Section III-B and III-C, and 
comparing the CUSUM performance with other multipath detection 
methods available in the literature. To do so, we consider a multi­
antenna GNSS receiver with Na = 3 antennas, a precorrelation 
bandwidth of 2 MHz and a sampling rate of fs = 10 MHz. The 
integration time is set to PDI = 1 ms and a multi-correlator 
architecture with L = 37 correlators is adopted. All experiments 
consider in-phase LOS and multipath components, with signal DOA 
Os = 95° and multipath DOA Omp = 20°. 

A. Experiment 1: Sensitivity of the MC-MA integrity metric. 

Fig. 3 shows the variation of the mean at 1iI of the proposed metric 
in (11) with respect to the signal-to-multipath ratio (SMR) and the 
relative delay between the LOS signal and the multipath replica. For 
the SMR variation case, the multipath delay is fixed to T = 0.05 
chips, while for the multipath delay variation, the SMR is fixed to 6 
dB. Results show how the value of 1-£1 decreases as the SMR or Tmp 

increase. This is consistent with the fact that multipath effects will 
be stronger as the SMR or T mp are lower, and thus 1-£1 will increase 
denoting stronger effects. These results will be different depending 
on the phase as well as the DOAs of the LOS and multipath replica, 
becoming difficult to completely characterize the proposed metric 
when multi path is present. Note that the upper plot of Fig. 3 includes 
values for negative SMR, which correspond to the NLOS case. 

Furthermore, the results in Fig. 4 exhibit a variation of 1-£1 with 
the receiver carrier-to-noise ratio (G /No), making more complex the 
characterization of the metric in presence of multipath. In this case, 
T = 0.05 chips and SMR = 6 dB. The plot in Fig.4 shows the ratio 
between 1-£1 and N;', which for low G / No takes values around those 
obtained at 1io (Le. 1-£1 ::::: N;' - 1). This means that for low G / No, 
noise effects are predominant and make difficult to distinguish the 
presence of multipath at 1i1, producing similar results to 1io. For 
higher G/No values, the ratio 1-£1/N;' is around some tens. This 
behavior allows us to fix a criterion in the choice of the bias term 
p in (13), since depending on the G/No, the difference between the 
mean after and before the change will be greater or lower. 
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Fig. 4. Sensitivity of J.LdN� as a function of G/No with 0.05 chips of 
multipath delay and SMR = 6 dB. 
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Fig. 5. Ho and H1 detection metric histogram for an high G / No (up) and 
low G/No (down) case. 

Fig. 5 shows this behavior and clarifies the idea of choosing the 
bias term p. In the high G / No case (upper plot), the difference is so 
large that a large subtracting offset p can be safely used satisfying 
(14). For instance an appropriate p can be extracted from Fig. 2 as 
the last valid value for which (17) can be numerically solved (i.e. 
p'" 6.3· N;' = 56.7). Using this value, we can see in the upper plot 
of Fig. 5 that the distributions after and before the change are shifted 
in such a way that all the values of fo and h are below and above 0, 
respectively, (Le. a free-FAR region). This behavior allows us to use 
a sign detector to decide between 1io and 1i1 depending on whether 
the prompt detection metric is negative or positive, respectively. 

On the other hand, for the low G / No case, we cannot use the same 
value for the bias term because it is too large, leading to 1-£1 < 0, 
and then the CUSUM algorithm would not work. For this reason, as 
h is unknown, the best way to proceed is by fixing p = N;', which 
is the minimum value to ensure a negative mean before the change 
according to (14), and it is also small enough to ensure a positive 
mean after change. 

B. Experiment 2: Performance of the MC-MA integrity metric. 

Now, we analyze the CUSUM performance using the proposed 
detection metric pmc in (6), and compare it with the performance 
obtained by using the detection method in [S]. In this case, the 
precorrelation bandwidth is set to 4 MHz, the multipath delay to 
T = 0.05, SMR = 6 dB, and low G/No scenarios are simulated in 
order to provide qualitative results, since for high G / No scenarios 
we know that the performance will be close to the unity probability 
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Fig. 7. Simulated ROC comparison between our method and the KS test, 
applied with N = 1, for a G/No = 20 dB-Hz (up) and G/No = 25 dB-Hz 
(down). 

detection with zero false alarm rate (i.e. free-false alarm rate). 

Fig. 6 shows the CUSUM performance fixing G / No = 25 dB-Hz, 
which is compared with the theoretical results in (7). The upper plot 
represents the detection delay measured in milliseconds with respect 
the set threshold, and shows similar values for the simulated results 
and theoretical ones. On the other hand, the lower plot shows how the 
empirical time between false alarms is greater than the lower bound 
given in (7), thus it allows us to set a threshold h assuring certain 
desired FAR Nra. 

Next, with the aim of comparing the suggested method with others 
contributions in the literature, we use the approach in [8] as reference, 
which is based on the classical Kolmogorov-Smirnov (KS) test. To 
do a fair comparison between both methods, the block length N used 
in the KS test must be set to N = 1 sample, thereby a decision will 
be take at each integration period, such as in the proposed method. 
Moreover, the comparison must be done in terms of detection and 
false alarm probabilities, since classical detection schemes, as it is 
the case of KS test, are not designed to be evaluated in terms of 
detection delay and samples between false alarms. 

To do so, we can generate Ns samples from both hypothesis 1io 
and 1i1 and obtain the probabilities as the ratio of the number of 
successes at each hypothesis within Ns samples. The number of 
successes at 1io and 1i1 provide the number of false alarms and 
detections, respectively. In Fig. 7 it is shown the receiver operating 

Fig. 8. Single-correlation method performance assuming real and complex 
distributions. Detection delay (up) and false alarm rate (down). 

characteristic (ROC) for two different levels of G/No. These results 
confirm the outperforming behavior of the proposed detection method 
compared to the KS test in the case of a sequential detection (N = 1). 
This is consistent because the KS test, as a classical detection method, 
is not designed to be optimal in an online detection framework, in 
contrast of CUSUM which is specifically designed to be optimal in 
this sense. 

Another important observation that can be extracted from Fig. 7 is 
the difference of performance in the CUSUM algorithm for the case 
of G/No = 20 and 25 dB-Hz. The former produces a mean after 
the change of the metric in (11) of Itl = 8.92, which using a bias 
offset of p = N� produces a negative value. This value is due to 
the closeness between densities after and before the change, which 
is logical as the noise effect prevails the multi path effects, and thus 
both hypothesis in (3) are very similar. Since this negative value is 
not very large, the CUSUM algorithm still works and outperforms 
the KS test. However, the actual power of the proposed method is 
provided at the lower plot of Fig. 7, which shows how the CUSUM 
detection probability is near the unity for all false alarm rates. In 
this case, the mean after the change with p = N� is positive and the 
CUSUM algorithm works in the standard conditions, which implies a 
negative and positive mean before and after the change, respectively. 

C. Experiment 3: Performance of the SC-MA integrity metric. 

Finally, we do the same as in the previous experiment but com­
paring with the single-correlation metric in (18) and the method 
suggested in [7]. Here, we also use a precorrelation bandwidth of 
4 MHz, the same SMR and multipath values as in the previous 
experiment, and low G / No scenarios are simulated. Fig. 8 shows the 
CUSUM performance of the method in [12] and the one developed 
in this work, fixing G / No = 26 dB-Hz. 

The upper plot of Fig. 8 represents the detection delay with respect 
to the set threshold, showing lower values for the complex distribution 
(i.e proposed method in (19» than for the real one (i.e method in 
[12]). However, the lower plot shows how the FAR is lower for 
the complex than for the real case. Then, to fix a similar FAR in 
both methods, the threshold must be increased in the complex with 
respect the real case. This leads to an increase in the detection delay, 
with respect to that achieved when using the same thresholds in both 
methods. 

Taking a look at the lower plot of Fig. 8, it can be seen how 
for a FAR of around 40 ms, the real case threshold must be fixed 
to 4 while for the complex case, it must be fixed to almost 14. 
With these thresholds, and coming back to the upper plot of Fig. 



Fig. 9. Delay detection vs false alarm for the real and complex distribution 
assumption. 

Fig. 10. Simulated ROC comparison between the proposed single-correlation 
method and the ANOVA test. 

8, it can be proved that a similar detection delay is achieved in both 
cases. Therefore, we have the same performance for both methods, 
but needing an higher threshold in the complex case than in the 
real one. This is intuitive because in the imaginary case, the method 
needs more time to have an accurate estimation to be used in the 
GLR CUSUM. In tum, this more accurate estimates will help us in 
reducing the false alarm rate. 

Fig. 9 shows the CUSUM performance as a function of the 
detection delay with respect the FAR for both methods, corroborating 
the same performance for both approaches. This is clear because 
the real and imaginary part of a complex Gaussian random variable, 
are distributed as real Gaussian variables. Thus, to evaluate them 
separately is the same as to evaluate them at the same time but using 
the complex distribution (i.e. both models are equivalents). 

In order to compare the single-correlation method with some other 
already available in the literature, we compare it with that used 
in [7]. The latter is based on the statistical analysis of variance 
(ANOVA) procedure, which is applied to the received signal after 
removing the LOS contribution (i.e. z(k) used in (18)). In this case, 
the ANOVA method needs at least to use two samples (i.e. two 
integration periods). To do a fair comparison between ANOVA and 
our single-correlation procedure, we can use in our technique a PDI 
time being twice the one used in ANOVA. Thereby, both methods 
will produce the same number of detections for a fixed time. 

Hence, using the same procedure in experiment 2 to obtain 
detection and false alarm probabilities, and applying the previous 

assumptions to do a fair comparison, results in Fig. 10 are obtained, 
which show how our method outperforms ANOVA method. This is 
again consistent with the fact that the ANOVA is not designed to be 
used as a sequential detection method. 

V. CONCLUSIONS 
This paper adopts a quickest detection framework for multi­

pathlNLOS detection in multi-antenna GNSS receivers, with the 
aim of providing integrity in GNSS applications. Two receiver 
architectures have been considered, leading to two different detection 
metrics to be used in the CUSUM algorithm. For the multi-correlation 
architecture, the log-likelihood ratio is not completely known and 
thus an alternative metric with the same behavior as the LLR is 
needed (i.e. with a negative and positive mean, in the absence and 
presence of multipath, respectively). On the other hand, for the single­
correlation architecture, we are forced to use the GLR CUSUM since 
the mean of the suggested metric in the presence of multi path is 
not known, leading to an increment of the computational burden 
compared with that of the multi-correlator method. Furthermore, 
remark that for multi-correlation architectures both MC-MA and 
SC-MA metrics can be used. However, comparing Fig. 10 and the 
lower plot of Fig. 7 can be inferred the outperforming of MC­
MA, being the best choice in multi-correlation architectures. Whereas 
for single-correlation architectures only the SC-MA method can be 
applied since the MC-MA can't be achieved. Numerical results of 
these techniques show the potential interest of them in practical 
applications involving GNSS signal integrity real-time monitoring, 
since the proposed methods outperform current classical multipath 
detectors. 
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