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Abstract—Hybridization of Global Navigation Satellite Systems
(GNSS) and fifth generation (5G) cellular positioning is foreseen
as a key solution to fulfill high-accuracy positioning requirements
in future use cases, such as autonomous vehicles. The evaluation
of the hybrid positioning capabilities implies the physical-layer
simulation of observables from both GNSS and 5G technologies.
In order to ease the complexity of the resulting system-level
simulations, a physical-layer abstraction of GNSS and 5G ranging
observables is here proposed. The abstraction of GNSS ranging
observables is based on a Gaussian-distributed model of the
errors sources, while the abstraction of 5G ranging observables
is based on the interpolation of the cumulative density function
(CDF) of the ranging errors for certain propagation conditions
and signal-to-noise (SNR) levels. Thanks to the exploitation of the
proposed physical-layer abstraction, low-complexity system-level
simulations are performed to assess the positioning capabilities
of GNSS and 5G downlink time-difference of arrival (DL-TDoA)
in urban macro-cell (UMa) environments. The simulation results
indicate the need to adopt hybrid solutions based on multiple
GNSS constellations and 5G DL-TDoA with 100-MHz bandwidth,
in order to ensure a horizontal positioning accuracy below 5 m
for 95% of cases in outdoor urban environments.

Index Terms—Hybrid positioning, GNSS, 5G, physical-layer
abstraction, system-level simulations.

I. INTRODUCTION

High-accuracy positioning is envisaged as one of the main
performance requirements in fifth generation (5G) networks
[1]. The baseline positioning requirement is mainly based
on a horizontal positioning accuracy below 10 m for the
95% of cases over outdoor and indoor scenarios. This is a
stringent requirement with respect to the existing regulatory
requirements for emergency services [2], based on a hori-
zontal accuracy below 50 m for the 80% of cases. Thus,

the combination of 5G with additional technologies, such as
Global Navigation Satellite Systems (GNSS), is expected to
be necessary to overcome this major challenge, especially in
harsh urban environments.

Towards the fulfilment of high-accuracy requirements, the
5G standardization has initiated the support of stand-alone
and hybrid positioning methods in [2]. This study concludes
that 5G-based positioning methods are shown to only meet
regulatory requirements, mainly due to the presence of net-
work synchronization errors, while the hybridization of GNSS
and 5G achieves the baseline 10-m accuracy requirement.
Nonetheless, hybrid positioning methods need further study in
order to target higher accuracy levels [1], such as sub-meter
accuracy on the 99% of cases.

The evaluation of hybrid positioning methods implies the
physical-layer simulation of multiple technologies, which typ-
ically increases the complexity of the simulations. In order to
simplify these simulations, hybrid evaluation methodologies
are proposed in [3] and [4], based on the physical-layer
abstraction of GNSS code observables. These methodologies
are further extended in this work with the abstraction of 5G ob-
servables for downlink time-difference of arrival (DL-TDoA).
Then, the proposed physical-layer abstraction of both GNSS
and 5G observables is here exploited to assess the achievable
hybrid positioning performance.

II. STANDARD SIMULATION ENVIRONMENTS

The simulation environments under study are defined based
on standard specifications. This section describes the use of
these standard environments for the simulation of GNSS and
5G positioning over urban areas.
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Fig. 1. Satellite visibility conditions based on ETSI TS 103.246-3 [5].

A. Satellite Environments

A typical representation of satellite propagation environ-
ments is based on a two-ray model under specific satellite visi-
bility conditions, as it is adopted in ETSI TS 103.246-3 [5] for
the definition of GNSS performance requirements. This ETSI
specification defines three satellite operational environments
based on sky attenuation conditions, i.e., open sky, asymmetric
visibility (AV) and urban canyon (UC) conditions. That is,
specific signal attenuation levels are defined for each possible
elevation and azimuth between receiver and satellite. This
approach simplifies the simulation environments by focusing
on specific and representative scenario conditions determined
by the GNSS visibility.

Our study considers the ETSI specification of AV and UC
environments, in order to define the satellite propagation con-
ditions over urban environments. As it is shown in Figure 1,
the asymmetric case represents a satellite environment with
higher satellite visibility than in the urban canyon case. Using
this simplified approach, the elevation and azimuth of the satel-
lite is sufficient to determine the line-of-sight (LoS) and non-
LoS (NLoS) conditions, including an additional attenuation in
certain LoS conditions.

B. Cellular Environments

The 3GPP standard defines four main cellular environments
depending on the network deployment, i.e., rural macro-cell
(RMa), urban macro-cell (UMa), urban micro-cell (UMi) street
canyon, and indoor hotspot (InH) or indoor office. These envi-
ronments are simulated based on the channel models defined in
[6]. These simulations follow the concept of user equipment
(UE) drops, in which UEs are randomly placed within the
coverage area of the predefined deployment scenario. Then,
the distance between base station (BS) and UE is used to
determine the propagation conditions based on the distance-
dependent LoS probability and pathloss models. Depending
on these conditions, the multipath channel is stochastically
generated following the tabulated channel parameters in [6].
Hence, each UE drop is an independent single statistical
event. A sufficiently high number of drops has therefore to be
drawn, usually through Monte-Carlo simulations, in order to
obtain a statistical validity of the aggregated results expressed

in the form of appropriate metrics. This stochastic channel
modeling is later exploited in Section III for the physical-
layer abstraction of cellular observables, in order to ease the
simulation complexity.

Nonetheless, the 3GPP channel models lack certain repre-
sentativity or suitability for positioning due to the absence of
NLoS bias. As it is discussed in [4], the path delays generated
according to [6] are normalized to the first arrival path as

τ = sort (τ ′ −min (τ ′)) , (1)

where τ ′ are the stochastically-generated path delays. This
normalization is only valid for LoS conditions. Thus, in
order to study the impact of the NLoS bias, the path delay
normalization is here removed as

τ = sort (τ ′) . (2)

Since this modification is not validated experimentally, this
simple approach is only intended to show the significance of
the NLoS bias for positioning evaluations.

III. PHYSICAL-LAYER ABSTRACTION OF OBSERVABLES

The physical-layer abstraction of observables is here re-
ferred as the process to model observables obtained from
physical-layer simulations or experimental measurements,
in order to later generate observables without performing
physical-layer simulations or measurements. This approach
allows to considerably ease system-level simulations, based on
the predefined observable models obtained from the physical-
layer abstraction. This section describes the physical-layer
abstraction proposed for GNSS and 5G observables.

A. GNSS Observables

The GNSS measurement errors can be classified between
non-local errors, i.e., satellite orbits, satellite clocks and atmo-
spheric effects, and local errors, i.e., loss of satellite tracking,
multipath caused by signal reflections on nearby objects,
NLoS tracking (or tracking of obstructed satellites by the
receiver) and receiver noise. Since these errors sources can
be considered to be independent random variables, they can
be grouped in a single additive white Gaussian noise (AWGN)
contribution with variance equal to the sum of the variances
of each contribution. The resulting ranging error is called
the User Equivalent Range Error (UERE), which is typically
used to analyze the expected GNSS performance. Thus, the
physical-layer abstraction of GNSS code observables is based
on the UERE analysis, by assuming code-based pseudoranges
obtained with dual-frequency GNSS receivers.

Let us model the k-th GNSS code pseudorange as

ρ̂GNSS,k = c · τ̂GNSS,k = ‖xsat,k−xUE‖+ c · δtGNSS+ esat,k,
(3)

where τ̂GNSS,k is the time-of-flight of the GNSS signal,
xsat,k = [xsat,k, ysat,k, zsat,k] is the satellite position, xUE =
[xUE, yUE, zUE] is the UE position, c is the speed of light,
δtGNSS is the clock offset of the UE (referenced to a GNSS
time), and esat,k is the pseudorange error. The inter-system



TABLE I
1-σ ERROR BUDGETS FOR GNSS PHYSICAL-LAYER ABSTRACTION.

Error source Elevation (degrees)
(1-σ, m) 5 10 15 20 30 40 50 60 90

GPS σorb,clk 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Galileo σorb,clk 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67

GLONASS σorb,clk 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Beidou σorb,clk 2 2 2 2 2 2 2 2 2

σiono 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.03 0.03
σtrop 1.35 0.75 0.51 0.39 0.27 0.21 0.18 0.16 0.14

GPS σw 0.75 0.63 0.52 0.42 0.30 0.22 0.18 0.18 0.18
Galileo σw 0.75 0.63 0.52 0.42 0.30 0.22 0.18 0.18 0.18

GLONASS σw 1.05 0.88 0.72 0.58 0.42 0.30 0.25 0.25 0.25
Beidou σw 0.75 0.63 0.52 0.42 0.30 0.22 0.18 0.18 0.18

σmp 4.61 4.37 4.22 4.14 4.05 4.02 4.01 4.00 4.00

bias between GNSS constellations is assumed to be known
and corrected, because this parameter is stable enough to be
estimated using information from long intervals. The pseudo-
range error is assumed Gaussian-distributed with zero-mean
and UERE variance as esat,k ∼ N (0, σ2

UERE,k(θk)). The
UERE variance is calculated as function of the k-th visible
satellite elevation θk from a certain constellation, by using the
standard deviation of each error source defined in Table I. As
a result, the UERE variance from the k-th satellite is

σ2
UERE,k(θk) = σ2

orb,clk(θk) + σ2
iono(θk) + σ2

trop(θk)+

σ2
w(θk) + σ2

mp(θk), (4)

where σ2
orb,clk(θk) is the orbit and clock error variance,

σ2
iono(θk) is the residual ionosphere error variance, σ2

trop(θk) is
the residual troposphere error variance, σ2

w(θk) is the AWGN
receiver noise error variance, σ2

mp(θk) is the multipath error
variance. The non-local 1-σ error budgets, i.e., σorb,clk, σiono
and σtrop, employed in this physical-layer abstraction of
GNSS observables are obtained or extrapolated from several
sources [7]–[17], and by considering dual-frequency GNSS
receivers. Regarding the local errors, i.e., σw and σmp, the
receiver noise values are obtained from what can be provided
by an average GNSS receiver [15]. The values employed for
each error source are considered to be representative in average
during long periods of time, different locations and for average
GNSS receivers, which means that there could be situations or
receiver types for which the errors would be above or below
those figures. Nevertheless, the total GNSS error budget would
not suffer major changes so it is considered representative.

The GNSS outliers due to NLoS bias are usually detected,
and discarded or down-weighted by the GNSS navigation
algorithms, thanks to the high amount of observables with
multiple constellations. Thus, the physical-layer abstraction of
GNSS code observables assumes that NLoS biases have been
filtered out so the results are obtained with GNSS satellites in
LoS conditions with a representative multipath error. For those
LoS attenuated conditions, such as in Figure 1a, the attenuation
is here simulated by doubling the standard deviation of the
AWGN receiver noise error, i.e., σ2

w,atten(θk) = (2 · σw(θk))2.
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Fig. 2. Architecture of 5G physical-layer abstraction of ranging errors.

B. 5G Observables

The physical-layer abstraction of 5G ranging observables is
described in the two-step procedure shown in Figure 2. First,
the received physical 5G signal is simulated to estimate the
ranging error for different signal-to-noise (SNR) levels. Then,
the cumulative density function (CDF) of the resulting ranging
errors per SNR level is computed and interpolated over the
probability and SNR axis. The ranging error interpolator is
finally used to generate 5G ranging observables given a certain
SNR level and probability. Although this study considers a
downlink 5G physical-layer simulator, the proposed approach
can be applied to both uplink and downlink transmissions for
simulated and experimental ranging measurements.

Let us model the k-th 5G ranging observable as

ρ̂5G,k = c · τ̂5G,k =

= ‖xBS,k − xUE‖+ c · δt5G + esync,k + eTDE,k, (5)

where τ̂5G,k is the time-of-flight of the 5G signal, xBS,k =
[xBS,k, yBS,k, zBS,k] is the k-th BS position, δt5G is the
clock offset of the 5G module (referenced to a GNSS time),
esync,k is the network synchronization error, and eTDE,k is
the time-delay estimation (TDE) error. As in [2], the network
synchronization error is here modeled as a truncated Gaussian
distributed random variable with zero mean and standard devi-
ation σsync within the interval of values [−2 · σsync, 2 · σsync].

The downlink 5G physical-layer simulator is based on
the dedicated transmission of orthogonal frequency division
multiplexing (OFDM) pilot signals, i.e., positioning reference
signal (PRS) with a frequency reuse factor of six, and the
channel models in [6]. The received signal is simulated by
convolving only one OFDM PRS symbol with a channel
realisation, and by adding AWGN for a certain SNR level.
Then, the threshold-based estimator in [3] is used to obtain
the TDE error eTDE,k as the time-delay measurement of the
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first correlation peak above a threshold, which is here defined
6 dB below the maximum peak over a correlation window.

The 5G physical-layer observable generation is performed
through Monte-Carlo simulations, in order to obtain an accu-
rate CDF of the ranging errors. Considering the independence
of the technical report (TR) 38.901 channel parameters with
the distance between UE and BS, the ranging errors can be
modeled based on the LoS condition and SNR level. Thus, the
abstraction procedure is repeated for LoS and NLoS conditions
within the set of expected SNR values. In addition, as it is
discussed in Section II-B, a modification to the TR 38.901
channel model is added in order to consider the NLoS bias. As
example, the cellular UMa environment is considered with a
5G PRS system bandwidth of 100 MHz, resulting in the CDF
of ranging errors shown in Figure 3. These results indicate
the high ranging accuracy achievable in LoS conditions, while
the NLoS bias has a significant impact on the ranging errors,
which mainly limit the 5G positioning performance.

The physical-layer abstraction of the ranging observables
is achieved thanks to the interpolation of the CDF of ranging
errors. This interpolation is performed in the ranging error do-
main, by considering the known SNR levels and probabilities
of the CDF. Since the probabilities of the ranging errors do not
follow a regular grid, a two-dimensional (2D) scattered inter-
polation is performed with CDF of ranging errors obtained for
the set of SNR levels. This interpolation results in a function or
model that can be later evaluated for a certain SNR level and
probability. Considering the UMa environment example with
100-MHz bandwidth, the 2D interpolation functions of the
CDF ranging errors are shown in Figure 4 for LoS and NLoS
conditions including the NLoS bias. As it can be noticed, the
ranging errors are mainly dominated by multipath for SNR
levels above -10 dB. In addition, the dominant LoS path for
LoS channels shows a SNR gain around 5 dB with respect to
the spread energy of NLoS channels.

These 2D interpolation functions are used as follows. First,
the SNR level is computed for certain propagation conditions.
Then, a random probability variable is drawn from a uniform
distribution between 0 and 1. Using the 2D interpolation func-
tions, these SNR and probability values yield a corresponding
ranging error, whose value will be used for the system-level
simulation. As it is shown in Figure 3, the CDF of the
observables generated with the abstraction process perfectly
matches those CDF obtained with physical-layer simulations.
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The physical-layer abstraction of 5G observables helps to
ease the simulation of ranging observables, by characterizing
the ranging errors for specific propagation conditions, channel
models, SNR levels and time-delay estimator. Although this
abstraction process is here applied to ranging observables, the
proposed approach can also be extrapolated to other observ-
ables. For instance, angle observables can also be abstracted
with an additional dimension for the orientation between trans-
mitter and receiver. The application of the proposed approach
for other position-related observables is left for future work.

IV. SYSTEM-LEVEL SIMULATION RESULTS

This section presents system-level simulation results of hy-
brid GNSS and 5G DL-TDoA positioning, by taking advantage
of the proposed physical-layer abstraction of observables. The
low-complexity of these system-level simulations eases the
evaluation of GNSS, 5G and hybrid positioning capabilities.

A. Evaluation Methodology

The evaluation methodology of the system-level simulations
are based on the procedure proposed in [4]. The evaluations
consider a UMa cellular deployment with inter-site distance
(ISD) of 500 m and wrap-around of BSs [2]. The 5G system
is assumed to operate a dedicated PRS transmission of 100
MHz with ideal PRS muting at a carrier frequency of 4 GHz.
The four main GNSS constellations are simulated with full
operational capabilities by using an orbiter generator, i.e.,
GPS with 24 satellites, Galileo with 27 satellites, GLONASS
with 24 satellites and Beidou with 27 satellites. The UEs are
dropped following a rectangular grid with 50-m resolution over
a 500 m2 evaluation area, resulting in 121 UE positions.

The GNSS observables are simulated using the physical-
layer abstraction described in Section III-A. First, the ETSI
AV or UC satellite environment is used to determine the
LoS conditions of the simulated satellites. Second, the visible
(or LoS) satellite positions are transformed to local coordi-
nates. Then, the UERE variance is computed for each visible
satellite. Finally, the GNSS code observable is generated by
summing the distance between UE and satellite with a constant
UE clock offset and a zero-mean Gaussian-distributed random
variable with UERE variance. For each simulation, the street
orientation of the ETSI satellite environment is shifted with a
uniform random angle between 0 and 180 degrees.



The 5G DL-TDoA observables are simulated using a five-
step procedure. First, the LoS conditions of the 5G ranging
observables are obtained based on the distance-dependent LoS
probability for UMa environments. Second, the SNR level of
each observable is computed with a 3GPP-like link budget,
as in [18], by using the UMa scenario parameters defined
in [2]. Third, the ranging observables are limited to the
six most powerful BSs. Fourth, the ranging observables are
generated following the physical-layer abstraction proposed
in Section III-B, by using as input the LoS conditions, the
SNR levels and the probabilities obtained from uniformly-
distributed random variables between 0 and 1. Finally, the
n-th 5G DL-TDoA observable is computed as the time dif-
ference of ranges from the serving and neighbour BSs as
ρDL−TDoA,n = ρ5G,1 − ρ5G,(n+1) for 1 ≤ n ≤ 5, where the
first range corresponds to the most powerful BS.

The three-dimensional (3D) position estimation is based on
a weighted least squares (WLS) algorithm with the available
GNSS code and 5G DL-TDoA observables. A tightly-coupled
WLS approach is adopted for hybrid solutions, which could
be computed at the UE or at a network server. The weighting
coefficients are described within the different evaluation cases.
The CDF of the horizontal positioning accuracy is here used
as the metric to assess the positioning performance.

The system-level evaluations are performed over 1000
Monte-Carlo simulations for each of the 121 UE dropped
positions. For each simulation, the number of visible GNSS
satellites can range from around 5 to 20 satellites depending
on the number of constellations and environment, while the
number of BSs is here fixed to six. As a result, the number
of physical-layer simulations is very significant. Furthermore,
channel simulations can be very time consuming due to
a high number of multipath components. Thus, physical-
layer simulations are expected to imply a high computation
time within system-level simulations. By using the proposed
physical-layer abstraction, the simulation time of the ranging
observables becomes negligible with respect to the simulation
of both GNSS and 5G physical layers. Thus, this approach
eases the system-level evaluations of the hybrid GNSS and
5G positioning capabilities.

B. Multi-GNSS Positioning Capabilities

The impact of the GNSS visibility is first assessed by
comparing the positioning performance of single and multiple
constellations. Considering a single constellation, i.e., GPS,
the number of visible satellites is around 5 and 3 satellites for
AV and UC environments, respectively. The GNSS visibility
significantly increases with multiple constellations, i.e., all
four GNSS, resulting in more than 20 visible satellites and
around 15 for AV and UC environments, respectively. The
position accuracy is then computed for single- and multi-
GNSS configurations, by considering the WLS approach with
known UERE variance for each observable. As it is shown
in Figure 5, the positioning availability of the single-GNSS
approach is severely degraded in UC environments due to
the lack of visible satellites, while the multi-GNSS approach
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reaches a 100% positioning availability. Nonetheless, multi-
GNSS solutions can only ensure a position accuracy below
10 m for 95% of cases in AV environments. This is due
to the limited accuracy of GNSS code observables in urban
environments, which are here modeled with an UERE standard
deviation above 4 m, and the reduced GNSS visibility in UC
environments.

C. Stand-alone 5G DL-TDoA Positioning Algorithms

The impact of the propagation and network synchronization
errors is assessed for stand-alone 5G DL-TDoA positioning.
This assessment is performed for UMa environment including
the NLoS bias with perfect synchronization and with a syn-
chronization error of 50-ns standard deviation. The positioning
algorithm is then evaluated with no prior information or
with full information of the ranging errors. That is, a least-
squares (LS) positioning algorithm, i.e., equal weights between
observables, is compared with the WLS approach, i.e., using
the absolute ranging errors within the weighting matrix. As it
can be seen in Figure 6, there is a minor improvement on the
use of WLS approach with respect to the LS approach. This
is due to the predominance of NLoS conditions in the UMa
environment, i.e., the LoS probability is as low as 35% for a
distance of 100 m from UE to BS, and due to the significant
synchronization error.
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D. Hybrid GNSS and 5G DL-TDoA Positioning Performance

The positioning limits of stand-alone GNSS and 5G can be
overcome with their fusion in a tightly-coupled positioning al-
gorithm, as in [3] and [4]. The five DL-TDoA observables over
UMa environment (including NLoS bias) with 100-MHz PRS
and perfect network synchronization are combined with multi-
GNSS observables obtained over AV and UC sky conditions.
Full information of the absolute ranging errors is considered
for both GNSS and 5G observables within the weighting
matrix of the WLS algorithm. As it is shown in Figure 7,
there is a significant improvement of the hybrid approach with
respect to the stand-alone positioning solutions in both AV and
UC sky conditions, resulting in a horizontal accuracy below
5 m in the 95% of cases. This significant improvement is
achieved thanks to the exploitation of high-accuracy 5G LoS
observables in combination with the high number of multi-
GNSS observables. Therefore, hybrid GNSS and 5G solutions
are expected to have a key role on the achievement of sub-
meter localization over urban areas. Nonetheless, further im-
provements may be necessary, such as with higher density of
5G BSs and high-accuracy carrier-phase GNSS measurements.

V. CONCLUSIONS

A physical-layer abstraction of ranging observables is pro-
posed in this paper, in order to ease the evaluation of hybrid
Global Navigation Satellite Systems (GNSS) and fifth gener-
ation (5G) positioning capabilities. The goal of this physical-
layer abstraction is to reduce the complexity of system-level
simulations, especially when physical-layer observables need
to be obtained from two different technologies as GNSS and
5G. The abstraction of GNSS ranging observables is adopted
from the literature based on the User Equivalent Range Error
(UERE) analysis, which models the GNSS code observable
error as a function of the satellite elevation. The physical-layer
abstraction of 5G ranging observables is here proposed based
on the interpolation of the cumulative density function (CDF)
of time-delay errors, obtained under certain line-of-sight (LoS)
conditions, signal-to-noise ratio (SNR) levels and propagation
channel model with a threshold-based estimator. The pro-

posed physical-layer approach is exploited to perform Monte-
Carlo simulations of the horizontal positioning performance
of GNSS, 5G and hybrid solutions. The GNSS system-level
simulation results show that multiple GNSS constellations are
required to achieve a 100% positioning availability in urban
canyons. Considering urban macro-cell (UMa) deployments,
the predominance of non-LoS (NLoS) propagation conditions
and network synchronization errors limit the positioning per-
formance of 100-MHz 5G DL-TDoA solutions. Thus, hybrid
GNSS and 5G is shown to achieve the best performance in all
configurations by significantly improving the positioning per-
formance of GNSS and 5G stand-alone solutions. The hybrid
solution ensures a horizontal accuracy below 5 m on the 95%
of cases. Still, further enhancements on both technologies,
such as on 5G network density and high-accuracy GNSS
observables, are needed to achieve sub-meter localization.
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[16] J. M. López-Almansa, J. Cosmen-Schortmann, P. Coutinho, and

M. Toledo, “Parametric and statistical characterization of multipath
errors for Galileo signals,” in Proc. ION GNSS, Sep. 2007.

[17] E. Domı́nguez, G. Seco-Granados, J. A. López-Salcedo, D. Egea,
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