
Designing Parametric Multiple-Choice Tests with
Moodle and LaTeX for Engineering Education

1st Rafael Terris-Gallego
Dept. of Telecommunications and Systems Engineering

School of Engineering, Universitat Autònoma de Barcelona
Bellaterra (Barcelona), Spain

rafael.terris@uab.cat

2nd Fran Fabra
Dept. of Telecommunications and Systems Engineering

School of Engineering, Universitat Autònoma de Barcelona
Bellaterra (Barcelona), Spain
franciscojose.fabra@uab.cat

3rd José A. López-Salcedo
Dept. of Telecommunications and Systems Engineering

School of Engineering, Universitat Autònoma de Barcelona
Bellaterra (Barcelona), Spain

jose.salcedo@uab.cat

4th Gonzalo Seco-Granados
Dept. of Telecommunications and Systems Engineering

School of Engineering, Universitat Autònoma de Barcelona
Bellaterra (Barcelona), Spain

gonzalo.seco@uab.cat

Abstract—E-learning has become a cornerstone of modern
education, offering flexibility, accessibility, and cost-effectiveness.
Among the available tools, Modular Object-Oriented Dynamic
Learning Environment (Moodle) stands out as a robust Learning
Management System (LMS) for managing online content, par-
ticularly through Multiple-Choice Questionnaires (MCQs), which
provide scalable and objective assessments. However, managing
large question banks or engineering-specific content in Moodle
can be challenging.

This paper demo how combining Moodle with LaTeX—using
the moodle package— addresses these challenges. This approach
enables efficient creation, management, and deployment of ques-
tions by leveraging LaTeX’s formatting capabilities alongside
Python or Lua scripting. Successfully implemented in Electrical
Engineering courses, it benefits both students and educators by
streamlining evaluation and improving learning flexibility.

Index Terms—E-learning, Moodle, LMS, LaTeX, Python, Lua,
evaluation, test, multiple-choice, questionnaire, MCQ, parametric

I. INTRODUCTION

E-learning has become increasingly important due to its
flexibility, accessibility, and cost efficiency. It allows learners
to access diverse, up-to-date content tailored to their needs
and has been widely adopted to enhance teaching practices
and reach broader audiences. By leveraging digital platforms
and tools, e-learning enables self-paced learning and fosters
collaboration through virtual classrooms.

Moodle is a widely used LMS for facilitating and enriching
online education. It offers a robust platform for educators to
efficiently create, deliver, and manage e-learning content and
activities. It also provides valuable tools for evaluation—tasks
that are often resource-intensive for educators.

Multiple-Choice Questionnaires are among the most ef-
fective assessment methods in e-learning, widely used in

This work has been partly supported by the AGAUR-ICREA Academia
Program and by Spanish Agency of Research (AEI) under grant PID2023-
152820OB-I00 funded by MICIU/AEI/10.13039/501100011033.

engineering education to efficiently evaluate students’ under-
standing of complex concepts. They offer several advantages,
such as broad topic coverage, automated grading, and the
possibility of providing immediate feedback. Well-designed
multiple-choice assessments also serve a formative purpose by
helping students identify misconceptions early and focus on
areas needing improvement, while providing instructors with
insights to adjust their teaching. These pedagogical benefits are
especially valuable in engineering courses, where conceptual
understanding and timely feedback are essential.

However, creating and managing these questionnaires re-
mains a time-consuming and complex. Implementing MCQs
effectively requires maintaining a comprehensive question
bank—a collection of categorized questions that can be reused
and managed efficiently—and ensuring efficient management
during their preparation and deployment. Moodle provides
functionality to create and manage MCQs, including options
for adding feedback and assigning scores. However, managing
a large question bank can be cumbersome, especially when
it comes to editing and updating questions. Furthermore,
Moodle’s interface can be limiting when it comes to creating
complex questions, particularly those that require advanced
mathematical notation or formatting.

Many of these challenges can be mitigated by integrating
complementary tools such as LaTeX. Combined, they provide
a reliable and efficient system for question management. La-
TeX is a powerful typesetting system widely used in academia
and engineering to create complex documents, particularly
those involving advanced mathematical notation. The commu-
nity has developed several LaTeX packages to support exam
creation in general and MCQ in particular (see, for example,
[9] and [10]). However, these packages rely solely on LaTeX
and do not offer utilities for integration with Moodle.

In this paper, we present how these tools can be com-
bined based on the moodle package. This approach draws on
several years of experience implementing them in Electrical

979-8-3315-0290-4/25/$31.00 ©2025 IEEE

Engineering courses. Results show measurable benefits for
students, who can assess and evaluate their learning flexibly.
Additionally, this system has proven extremely useful for
educators, enabling rapid student evaluation not only through
computer-based access but also using Moodle’s offline test
tool. Moreover, this method enables the generation of ques-
tions using the parametric capabilities of Python and Lua,
allowing for an efficient expansion and management of the
question bank. Beyond its technical efficiency, this approach
supports educational alignment by promoting adaptive assess-
ments that enhance conceptual understanding and reduce rote
learning through variation and adaptivity.

This paper is organized as follows. Section II describes how
to create MCQs directly in Moodle, outlining its advantages
and limitations. Section III presents the integration of LaTeX
with Moodle using the moodle package. Section IV details
the generation of parametric questions with Python/Lua and
LaTeX, emphasizing the resulting flexibility and scalability.
Section VI summarizes the main contributions, and Sec-
tion VII suggests directions for further work.

II. MULTIPLE-CHOICE QUESTIONNAIRES WITH MOODLE

A multiple-choice question is a type of assessment that
presents a question or statement followed by several possible
answers. Moodle offers several options to handle them, includ-
ing selecting one or more correct answer, providing answer-
specific or general feedback, and assigning scores to each
answer.

To create an MCQ, Moodle offers the ability to create a
repository of questions known as the question bank. This
allows educators to organize questions into categories (see
Fig. 1), making it easier to manage large sets of questions.
It also facilitates the reuse of questions across different as-
sessments.

Figure 1. Question categories in Moodle.

Moodle allows the creation of different question types,
including standard multiple-choice questions as well as cal-
culated multi-choice questions [7], as shown in Fig. 2. The
latter enables the use of parameters that can be randomly
generated, allowing the creation of numerous variations of the
same question. This is especially useful in engineering courses
where students solve problems with varying inputs.

However, we will focus on regular multiple-choice ques-
tions, as calculated questions are not currently supported by
the moodle package used to integrate LaTeX with Moodle.

Figure 2. Question types in Moodle.

It is worth noting that TeX notation1 can be used directly
in Moodle, e.g. in question statements, as shown in Fig.3.
This feature is useful for rendering mathematical notation
directly within the question bank. However, Moodle uses a
different LaTeX engine than standard compilers or editors, so
LaTeX capabilities are limited. In particular, since Moodle 2.7,
Moodle has used the MathJax JavaScript library to render TeX
commands in browsers at display time [8].

Figure 3. Title and description for mutiple-choice question in Moodle, using
TeX notation.

Including the solution to the question is highly recom-
mended, as it allows participants to review and compare their
answers afterward. This can be achieved either by adding
specific feedback to each answer option, or by providing
general feedback for the entire question, as shown in Fig. 4.

The correct answer for a multiple-choice question is desig-
nated by assigning a score of 100%, as shown in Fig.5. For
incorrect answers, several options are available. The simplest
approach is to assign a score of 0%, which does not penalize

1For TeX notation in Moodle, it is recommended to enclose expressions
with the operators “\(” and “\)” and “\[” and “\]” to ensure proper rendering,
instead of the often used $...$ and $$...$$, respectively.

Figure 4. General feedback for mutiple-choice question in Moodle.

incorrect selections. However, this can lead to inflated scores
due to random guessing. To address this, Moodle allows the
assignment of negative scores to incorrect answers, which
are subtracted from the total score. For example, with four
possible answers and a negative score of one-third (see Fig.5),
randomly guessing all questions would yield an average score
of zero. This encourages thoughtful responses over guessing. It
is also possible to assign a positive score—less than 100%—to
answers that are partially correct.

Figure 5. Correct option for multiple-choice question in Moodle.

Figure 6. Incorrect option for multiple-choice question in Moodle.

When introducing the questions in the question bank it is
also very useful to use tags to help identify the questions, as
shown in Fig. 7. This is particularly important when the ques-
tion bank contains a large number of questions, as it allows for
easy filtering and searching. It also allow to group questions
by topic, year of creation, or any other criteria relevant to the
course. Combining the use of tags and categories enables a
powerful and flexible way to manage the question bank. This
is particularly useful when creating questionnaries, as it allows
for easy selection of questions based on specific criteria.

Finally, Moodle allows previewing the questions created, as
shown in Fig. 8. This enables comprehensive verification of the

Figure 7. Selecting tags for the new question in Moodle.

question before adding it to the question bank, especially with
regard to TeX notation, given the limitations mentioned above.
The preview also includes the option to test the question,
which is particularly useful for checking its behavior and the
feedback provided.

Figure 8. Preview of the created question.

While it is possible to build a complete question bank by
repeating the process described above, certain limitations of
Moodle’s interface quickly become evident. While managing
a small set of questions may be manageable, handling dozens
or hundreds of them becomes increasingly tedious, particularly
when entering answer options. Additionally, updating infor-
mation across multiple questions requires editing each one
individually. Fortunately, these limitations can be effectively
overcome by using LaTeX in combination with the moodle

package.

III. INTEGRATING LATEX WITH MOODLE

A. Why LaTeX?

LaTeX is a flexible typesetting system, well-known for han-
dling complex mathematical notation. It is particularly well-
suited for engineering courses requiring complex expressions.
It is also widely used in academic and research settings,
making it familiar to many educators and students. The popular
online platform Overleaf has become a standard for creating
LaTeX documents, offering a wide range of features and robust
collaboration tools. In its typical configuration, the left panel
provides the editing interface, while the right panel displays
the rendered output, as shown in Fig. 9.

Despite the complexity of LaTeX and the learning curve
associated with it, very basic notions are sufficient to create a
question bank. LaTeX is a markup language, meaning it uses
tags to define the structure and formatting of the document,
similar to HTML used for web pages.

LaTeX commands are easily recognizable because they
begin with a backslash (\). Mandatory arguments are enclosed

Figure 9. Creation and preview of a LaTeX document in Overleaf.

in curly braces ({}), while optional arguments are placed in
square brackets ([]). Commands that begin with \begin{}

create environments, which must be closed with the corre-
sponding \end{} command. Interested readers can refer to [1]
or [2] for comprehensive LaTeX documentation, and to [3] for
resources specific to Overleaf.

It is also possible to load packages—additional features not
included by default in LaTeX. These must be specified in
the preamble of the document, which is the section before
the \begin{document} command. In our case, it is essential
to include the moodle package, which enables the use of
questions created in LaTeX within the Moodle question bank.

B. The Moodle package
The moodle package [5] is a LaTeX package that allows

the creation of questions in LaTeX format, which can then
be imported into Moodle. Although it supports question types
beyond multiple-choice, we will focus exclusively on the latter.
Fortunately, the package is available by default on Overleaf.

To create an MCQ using the moodle package, we must
first define a quiz environment, which takes the title of the
questionnaire as its argument. An optional argument can be
used to specify the question category. Within this environment,
each question is defined using a multi environment, which
requires the question title as a mandatory argument. Optional
arguments include the penalty for each attempt (not to be
confused with the penalty for an incorrect answer), general
feedback, or tags. Finally, the possible answers are defined
using the \item command. If the item is preceded by an
asterisk (*), it marks the correct answer; otherwise, it indicates
an incorrect answer, which can optionally be followed by a
specified penalty.

The penalty for an incorrect answer is defined as a fraction
of the total score, which is 100% by default ([fraction=100]).

For example, if the penalty is set to -33.33333, selecting that
answer will result in a deduction of one third of the total score.
It is important to use the exact number of decimal places, as
Moodle will not accept any value other than those specified in
the official documentation [6]. To simplify this, it is convenient
to define a variable for the penalty using the \def command in
LaTeX, as shown in Listing 1. This avoids repeating the same
value in each question and is particularly useful when creating
a large number of questions, as it facilitates easy updates and
modifications.

1 \documentclass[12pt]{article}
2 \usepackage{moodle}
3 \def\pn{-33.33333} % Penalty for incorrect answer
4

5 \begin{document}
6 \begin{quiz}{Communications Theory}
7

8 \begin{multi}[penalty=0,tags={{2005},{Information
Entropy}},feedback={The entropy of \(X\) is given
by:\[H(X) = -0.25 \log_2 (0.25) - 0.75 \log
_2(0.75) = 0.81126\ \mathrm{ bits}\]}]{Question 1}

9

10 \(X \) is a random variable representing the outcome of
a coin toss. What is its entropy if the
probability of landing on the heads is \(0.25 \)?

11

12 \item* \(H(X) = 0.81126 \) bits
13 \item[fraction=\pn] \(H(X) = 0.40562 \) bits
14 \item[fraction=\pn] \(H(X) = 0.38815 \) bits
15 \item[fraction=\pn] \(H(X) = 0.84349 \) bits
16 \end{multi}
17

18 \end{quiz}
19 \end{document}

Listing 1. LaTeX document for generating an MCQ using the moodle package.

C. Importing from LaTeX to Moodle

The compilation of a LaTeX document that loads the
moodle package generates, alongside the expected PDF out-
put, an eXtensible Markup Language (XML) file named
output-moodle.xml. This file can be obtained directly from
Overleaf using the “Download other output files” option, as
shown in Fig. 10.

Figure 10. Downloading the XML file for Moodle from Overleaf.

The generated XML file contains all the questions defined
in the LaTeX document—including their titles, descriptions,
feedback, scores, and answer optio—formatted according to
Moodle specifications. This file can therefore be imported
directly into the Moodle question bank, as shown in Fig. 11.

Figure 11. Importing the XML file generated with LaTeX into Moodle.

The import dialog also allows manually specifying the
category where the questions will be stored, but Moodle can
extract this information directly from the XML file if it is

specified in the original LaTeX document using the optional
argument of the quiz environment, as mentioned previously. If
the XML file contains no syntax errors, Moodle will proceed
with the import, as shown in Fig. III-C, and the question will
be successfully added to the question bank.

Figure 12. Successful import of the XML file.

This approach has several advantages over entering ques-
tions directly in Moodle. Some of the most significant are:

• It simplifies question editing, as a LaTeX document is not
constrained by Moodle’s interface limitations. A LaTeX
file is essentially a plain text document that can be edited
with any text editor, even offline. This is particularly use-
ful when collaborating with other instructors on question
development.

• It enables the efficient creation of similar questions by
modifying only the relevant values or data directly in
the LaTeX file. This can be done easily using the find-
and-replace function included in text editors2. In con-
trast, Moodle requires editing each question individually
through a rigid user interface.

• It allows for much faster question creation by simply
copying and pasting the code between the \begin{multi}

and \end{multi} commands in the LaTeX document—an
operation far quicker than using Moodle’s interface.

D. Creating Multiple-choice Tests from the Question Bank

Once the required number of questions have been imported
into Moodle’s question bank, they can be used to create a
questionnaire. This is done by adding a quiz-type resource
in Moodle, as shown in Fig. 13. In addition to the standard
quiz, there is also an H5P quiz option—which allows the
integration of interactive elements using HTML5—and an
offline quiz option—which enables the questionnaire to be
printed on paper and the responses scanned later. The latter
is particularly useful when computers are unavailable or when
physical copies are required due to specific conditions, and it
leverages the question bank created in Moodle.

Finally, questions can be selected directly from the question
bank, as shown in Fig. 14. To facilitate question selection,
filters can be applied by specifying a category and/or relevant
tags. This approach provides a high level of control and
flexibility when multiple-choice tests are designed.

2This process can be further enhanced by using parametric questions,as
described in Section IV

Figure 13. Adding a “quiz” resource in Moodle.

Figure 14. Adding questions to the quiz.

It is important to note that the moodle package has certain
limitations. As previously mentioned, not all LaTeX com-
mands are supported, and some features may not function as
expected. Additionally, the package contains several bugs and
issues that should be taken into account (see Section 5 of [5]).

Fortunately, the package is actively maintained, and many
of the most significant issues present in earlier versions—
such as characters not rendering correctly—have already been
resolved. Although not all Moodle options are supported,
new features are added regularly. The latest version of the
package is available on Overleaf and is recommended for
ensuring compatibility with the most recent version of Moodle.
Nevertheless, some issues related to the quality of images
generated by the moodle package are still being reported.

IV. PARAMETRIZING QUESTIONS

The previous section has shown how to create a multiple-
choice questionnaire using the moodle package, which lever-
ages LaTeX editing capabilities. This section explores how
to create parametric questions, which allows generating a
large number of questions with different values. However,
LaTeX by itself is not a programming language, but rather
a typesetting system. Therefore, without any other assistance,
it lacks native support for variables or functions in the same
way that programming languages do.

The LaTeX user community has developed several packages
that enable the use of variables and functions within LaTeX
documents. The most widely used among them are pgf [13]
and fp [14]. However, these packages can not be combined
with the moodle package for creating parametric questions in
Moodle, as the variables remain unparsed.

To overcome this limitation, a pre-processing approach is
required, in which a programming language is used to generate
the LaTeX code for the questions. This enables parametric
question creation by defining variables and functions in code
and generating corresponding LaTeX. In this context, Python
is one of the most widely used programming languages,
particularly in academia and research.

The use of Python allows for leveraging its extensive
libraries and packages, which provide a wide range of func-
tionalities for engineering education, making it well-suited for
generating parametric LaTeX content. The workflow for gen-
erating parametric MCQs using Python, LaTeX, and Moodle
is shown in Fig. 15.

Python script LaTeX with moodle

output-moodle.xmlMoodle quiz

Figure 15. Workflow for generating parametric MCQs using Python scripts,
LaTeX, and Moodle.

Several packages allow Python code to be processed within
LaTeX documents, such as pythontex [11] and pyluatex [12].
These packages enable Python code to be embedded in a
LaTeX document and executed during compilation to generate
the final output. Unforunately, these packages are not currently
supported on latest version of Overleaf (v2). This is because of
a change to the security model in the last version (as opposed
to v1), that prevents running arbitrary code on the server [4].

Therefore, using Python with Overleaf usuarlly requires
maintaining separate Python scripts and LaTeX code. As an
alternative, Lua—a lightweight programming language that
can be embedded directly into LaTeX documents [15]—can be
used. This enables the execution of Lua code within the LaTeX
source, allowing parametric questions to be generated without
the need for external scripts. Nevertheless, Lua’s capabilities
are more limited compared to those of Python.

Next, three different approaches for generating parametric
MCQs using LaTeX are presented. The first two rely on
Python scripts, while the third is based on Lua coding. Table I
summarizes the main features of each approach, highlighting
their strengths and weaknesses.

A. Approach 1: Python script to generate LaTeX document

The first approach consists of using a Python script to
generate the LaTeX code, which can then be compiled to
obtain the final LaTeX document that produces the required
XML file to be imported in Moodle.

In Listing 2, a simple Python script is presented that
generates a LaTeX document containing a multiple-choice
question. The script uses the math library to compute the
entropy of the random variable with the given probability p.

Table I
COMPARISON OF APPROACHES FOR GENERATING PARAMETRIC MCQS

Approach 1: Python script generating LaTeX 2: Python script directly in Overleaf 3: Lua code in LaTeX
Ease of Use Requires running Python script sepa-

rately before LaTeX compilation.
Directly integrates Python script execu-
tion in Overleaf.

Fully embedded in LaTeX, no external
script required.

Flexibility Python’s full capabilities can be used. Python’s full capabilities can be used. Limited to Lua’s capabilities.

Overleaf Compatibility Fully compatible but requires manual
upload of generated LaTeX file.

Fully compatible. Fully compatible, no external dependen-
cies.

Complexity Two-step process (Python + LaTeX). Single-step process using Overleaf. Single-step process using LuaLaTeX.

Dependencies Requires external Python interpreter. Requires Python interpreter in Overleaf. Requires LuaLaTeX engine.

The script also generates two random values for the incorrect
answers, using the random library.

1 import math, random
2

3 p = 0.25
4 q = 1 - p
5 H = -p*math.log2(p)-q*math.log2(q)
6 H_half = H/2
7 H_r1, H_r2 = random.uniform(0,1), random.uniform(0,1)
8

9 with open("latex-question-python-generated.tex", "w") as
texfile:

10 texfile.write(rf"""\documentclass[12pt]{{article}}
11 \usepackage{{moodle}}
12 \def\pn{{-33.33333}} % Penalty for incorrect answer
13

14 \begin{{document}}
15 \begin{{quiz}}{{Communications Theory}}
16

17 \begin{{multi}}[penalty=0,tags={{{{2005}},{{Information
Entropy}}}},feedback={{The entropy of \(X\) is
given by:\[H(X) = -{p} \log_2 ({p}) - {q} \log_2
({q}) = {H:.5f}\ \mathrm{{bits}}\]}}]{{Question 1}}

18 \(X \) is a random variable representing the outcome of
a coin toss. What is its entropy if the
probability of landing on the heads is \({p} \)?

19

20 \item* \(H(X) = {H:.5f} \) bits
21 \item[fraction=\pn] \(H(X) = {H_half:.5f} \) bits
22 \item[fraction=\pn] \(H(X) = {H_r1:.5f} \) bits
23 \item[fraction=\pn] \(H(X) = {H_r2:.5f} \) bits
24 \end{{multi}}
25

26 \end{{quiz}}
27 \end{{document}}""")

Listing 2. Python script generate_latex_document.

Once the script is executed, a LaTeX document named
latex-question-python-generated.tex is generated. The
resulting document is identical to that shown in Listing 1,
but the entropy value and the incorrect answers are produced
by the Python script, making the question parametrizable. This
LaTeX document can then be compiled in Overleaf to produce
the XML file required for Moodle.

B. Approach 2: Python script to generate LaTeX question in
Overleaf

The first approach implies compiling the python script to
obtain the LaTeX document. To avoid this precompilation, a
second approach is presented, in which the Python script is di-
rectly executed from Overleaf, using the following command:

\input{|python generate_latex_code.py}.

In this approach, the Python script only generates the code
for the questions, rather than the whole LaTeX document, as
shown in Listing 3.

1 import math, random
2

3 p = 0.25
4 q = 1 - p
5 H = -p*math.log2(p)-q*math.log2(q)
6 H_half = H/2
7 H_r1, H_r2 = random.uniform(0,1), random.uniform(0,1)
8

9 print(rf"""
10 \begin{{multi}}[penalty=0,feedback={{The entropy of \(X

\) is given by:
11 \[H(X)=-{p}\log_2({p})-{q}\log_2({q})={H:.5f}\ \mathrm{{

bits}}\]}}]{{Question 1}}
12

13 \(X\) is a random variable representing the outcome of a
coin toss. What is its entropy if the probability
of landing on heads is \({p}\)?

14

15 \item* \(H(X)={H:.5f}\) bits
16 \item[fraction=\pn] \(H(X)={H_half:.5f}\) bits
17 \item[fraction=\pn] \(H(X)={H_r1:.5f}\) bits
18 \item[fraction=\pn] \(H(X)={H_r2:.5f}\) bits
19 \end{{multi}}
20 """)

Listing 3. Python script generate_latex_question.

Finally, in Listing 4, the LaTeX document which uses
the previous script is shown. When executed in Overleaf, it
produces directly the XML file to be imported in Moodle.

1 \documentclass[12pt]{article}
2 \usepackage{moodle}
3

4 \def\pn{-33.33333} % Penalty for incorrect answer
5

6 \begin{document}

7

8 \begin{quiz}{Communications Theory}
9 \input{|python generate_latex_question.py}

10 \end{quiz}
11

12 \end{document}

Listing 4. LaTeX document based on Python script using Overleaf.

C. Approach 3: Lua code in LaTeX
The third approach consists of using LuaLaTeX, which

allows the execution of Lua code directly within the LaTeX
document. This approach is particularly useful when using
Overleaf, as it does not require any external scripts or pre-
compilation. Listing 5 shows the code to generate the same
question as in the previous examples.

1 \documentclass[12pt]{article}
2 \usepackage{moodle}
3 \usepackage{luacode}
4

5 \def\pn{-33.33333} % Penalty for incorrect answer
6

7 \begin{document}
8 \begin{quiz}{Communications Theory}
9

10 \begin{luacode*}
11 function generate_mcq(title, description, tags, feedback

, correct, wrong)
12 tex.print("\\begin{multi}[penalty=0,tags={" .. tags ..

"},feedback={" .. feedback .. "}]{ " .. title ..
"}")

13 tex.print(description)
14 tex.print("\\item* " .. correct)
15 for _, opt in ipairs(wrong) do tex.print("\\item[

fraction=\\pn] " .. opt) end
16 tex.print("\\end{multi}")
17 end
18

19 -- Auxiliary functions
20 function round(val, n) return math.floor(val * 10^n +

0.5) / 10^n end
21 function log2(x) return math.log(x) / math.log(2) end
22 \end{luacode*}
23

24 % Question 1
25 \begin{luacode*}
26 math.randomseed(os.time())
27

28 p = 0.25
29 q = 1 - p
30

31 local H = -p * log2(p) - q * log2(q)
32 local H_half = H / 2
33 local H_r1 = math.random()
34 local H_r2 = math.random()
35

36 local title = "Question 1"
37 local description = "\\(X \\) is a random variable

representing the outcome of a coin toss. What is
its entropy if the probability of landing on the
heads is ".. p .."?"

38 local tags = "{2005},{Information Entropy}"
39 local feedback = "{The entropy of \\(X\\) is given by

:\\[H(X) = -".. p .."\\log_2 (".. p ..") - ".. q

.."\\log_2(".. q ..") = ".. round(H,5) .."\\ \\
mathrm{ bits}\\]}"

40

41 generate_mcq(title, description, tags, feedback, round
(H,5), {round(H_half,5), round(H_r1,5), round(H_r
2,5)})

42 \end{luacode*}
43

44 \end{quiz}
45 \end{document}

Listing 5. LaTeX document based on Lua code.

V. PRELIMINARY EVALUATION

At the end of the 2024–2025 academic year, a survey was
conducted among students of the Communications Engineer-
ing course to assess their satisfaction with the use of MCQs.
One of the survey items asked students to rate their agreement
with the statement: “I consider that the MCQs are an efficient
tool for the course.” Responses were given on a 5-point scale,
where 1 indicated the lowest level of agreement and 5 the
highest. As shown in Fig. 16, 86.4% of students rated the
MCQs with a score of 4 or 5, while only 4.6% rated them
with a score of 1 or 2, indicating a high level of satisfaction.

0 10 20 30 40 50

1
2
3
4
5

0.0%

4.6%

9.1%

43.2%

43.2%

Percentage distribution (%)

Sc
or

e

Figure 16. Satisfaction scores of students surveyed regarding the efficiency
of the MCQs in the course (1 = lowest, 5 = highest).

VI. CONCLUSION

In this paper, a method for efficiently creating parametric
Multiple-Choice Questionnaires by combining Moodle, La-
TeX, and Python has been presented. First, the process of
creating multiple-choice questions directly in Moodle was
discussed, with emphasis on its strengths and limitations.
Subsequently, the integration of LaTeX with Moodle through
the moodle package was explored. This integration not only
enables efficient question management but also offers clear
advantages for engineering courses, where LaTeX’s advanced
mathematical capabilities are particularly beneficial.

Next, three approaches for generating parametric questions
by leveraging the programming capabilities of Python and Lua
were presented. The first approach involves the use of a Python
script to generate a complete LaTeX document, which can then
be compiled to produce the XML file required by Moodle.
The second approach allows the Python script to be executed
directly within Overleaf, generating only the LaTeX code for
the questions without requiring precompilation. Finally, the

third approach employs LuaLaTeX, enabling Lua code to be
executed directly within the LaTeX document.

No single approach fits all needs, as each offers distinct
advantages and limitations. The first two approaches provide
greater flexibility and control over the question generation
process, while the third is simpler and more straightforward
to implement. Nonetheless, all three methods are far more
efficient than using Moodle alone.

While designed with engineering education in mind, these
methods are applicable to any discipline that utilizes multiple-
choice questions, making them a valuable resource for educa-
tors across a wide range of disciplines.

Preliminary evaluations indicate that students perceive
MCQs as an effective learning tool, with a significant majority
expressing satisfaction with their use in the course. These find-
ings suggest that the methods presented not only enhance the
efficiency of question creation but also contribute positively to
students’ learning experiences.

VII. FUTURE WORK

Future work includes enhancing the integration of Python
with LaTeX to streamline parametric content generation work-
flows. The authors are also considering contributing to the
development of the moodle package to extend its functionality
with more advanced features.

Moreover, the use of parametric questions will be expanded
beyond multiple-choice formats to include open-ended and
essay-type questions, aiming to support more comprehensive
evaluations—particularly in engineering courses that empha-
size problem-solving.

A formal pedagogical evaluation is currently underway
through anonymous student surveys to assess usability, en-
gagement, and perceived learning outcomes. The findings
will guide further refinement and help adapt the method to
maximize educational effectiveness.

ACKNOWLEDGMENTS

The authors would like to thank Anders O.F. Hendrickson
and Matthieu Guerquin-Kern, as well as all contributors to the

moodle package, for their work in developing a tool that has
greatly facilitated the creation of multiple-choice questions in
LaTeX. The authors also thank the students of the Commu-
nications Engineering course at the Universitat Autònoma de
Barcelona for their valuable feedback and participation in the
survey.

REFERENCES

[1] LaTeX Project, LaTeX2e Documentation. Available: https://www.
latex-project.org/help/documentation/, Accessed: 2025-03-01.

[2] Mittelbach, Frank and Goossens, Michel, The LaTeX Companion, 2nd
edition, Addison-Wesley, 2004. Available: https://www.latex-project.org/
help/books/tlc3-digital-chapter-samples.pdf.

[3] Overleaf, Overleaf Documentation. Available: https://www.overleaf.
com/learn, Accessed: 2025-03-01.

[4] Overleaf, Overleaf v2 FAQ. Available: https://www.overleaf.com/learn/
how-to/Overleaf_v2_FAQ. Accessed: Accessed: 2025-03-01.

[5] Hendrickson, Anders, The moodle package: generating Moodle quizzes
via LaTeX, 2016. Available: https://ctan.math.utah.edu/ctan/tex-archive/
macros/latex/contrib/moodle/moodle.pdf.

[6] Moodle, Moodle Documentation. Available: https://moodle.org/docs/,
Accessed: 2025-03-01.

[7] Moodle, Calculated Questions. Available: https://docs.moodle.org/405/
en/Calculated_multichoice_question_type, , Accessed: 2025-03-01.

[8] Moodle, Using TeX notation. Available: https://docs.moodle.org/401/en/
Using_TeX_Notation, Accessed: 2025-03-01.

[9] Verna, Didier, QCM – A LaTeX2e package for making Multiple Choices
Questionnaires, 2004. Available: https://ctan.javinator9889.com/macros/
latex/contrib/qcm/qcm.pdf.

[10] Messineo, Grazia and Vassallo, Salvatore, Package esami, 2024. Avail-
able: https://ctan.fisiquimicamente.com/macros/latex/contrib/esami/doc/
esami-doc-en.pdf.

[11] Poore, Geoffrey M., PythonTeX Package, 2021. Available: https://ctan.
fisiquimicamente.com/macros/latex/contrib/pythontex/pythontex.pdf,
Accessed: 2025-03-01.

[12] Enderle, Tobias, The pyluatex package, 2024. Available: https:
//ctan.fisiquimicamente.com/macros/luatex/latex/pyluatex/pyluatex.pdf,
Accessed: 2025-03-01.

[13] Tantau, Till, The PGF package, 2023. Available: https://ctan.
fisiquimicamente.com/graphics/pgf/base/doc/pgfmanual.pdf, Accessed:
2025-03-01.

[14] Mehlich, Michael, The FP package, 2019. Available: https:
//ctan.fisiquimicamente.com/macros/latex/contrib/fp/documentation.pdf,
Accessed: 2025-03-01.

[15] Overleaf, An Introduction to LuaTeX. Available: https:
//www.overleaf.com/learn/latex/Articles/An_Introduction_to_LuaTeX_
(Part_1)%3A_What_is_itâĂŤand_what_makes_it_so_different%3F,
Accessed: 2025-03-01.

