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Abstract—Results in distributed compressed sensing show that
this technique can be applied to wireless sensor networks inorder
to reduce the power consumption and the amount of channel
uses. In this paper we extend such results with the study of the
physical layer secrecy performance. In particular, we focus on
an amplify-and-forward compressed sensing scheme (AF-CS)for
the case when malicious eavesdropping nodes are listening.We
demonstrate that this scheme achieves perfect secrecy in presence
of one eavesdropper (and also for a small number of them). We
also show that a very high number of eavesdropping nodes are
required to perfectly recover the signal in comparison to other
distributed compressed sensing schemes in the literature.

Keywords− Compressed sensing, distributed schemes, phys-
ical layer secrecy, sparse signals, wireless sensor networks.

I. I NTRODUCTION

Physical layer secrecyprovides protection against malicious
eavesdroppers without the need of exchanging cryptographic
keys that are used to encode the message in the higher layers.
Thus the extra energy cost in terms of computing complexity
and signaling is reduced. This complexity turns out to be an
important drawback in aWireless Sensor Network(WSN),
since it is typically conformed of many small nodes that are
battery and hardware limited.

Compressed Sensing(CS) is a signal processing tool that
allows us to sample the signals below the Nyquist rate [1],
and it is specially powerful in scenarios where the signals are
sparse or compressible in a certain basis domain, as in image
signal processing or detection. However, recent works propose
CS as a secrecy technique, e.g., the authors in [2] propose a
CS scheme to encrypt the measurements in addition to the
already-mentioned compression properties of CS. However,
the exchange of thesensing matrixas the key to encrypt
and decrypt the message is needed, and hence this scheme
does not have the benefits ofphysical layer secrecyin front
of the secrecy obtained in higher layers. Furthermore, other
works such as [3] propose a CS framework that establishes
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a secure physical layer transmission. However, the considered
scenario is a point-to-point communication that involves only a
single transmitter that compresses the signal, one receiver and
one eavesdropper. Hence, this scenario follows acentralized
approach that is not directly applicable to our scheme due to
the distributednature of the WSN environment.

Following a distributed approach, the authors of [4] propose
a CS scheme applied to WSNs namedCompressed Wireless
Sensing(CWS). In such a scheme, all the sensors send syn-
chronously only their most relevant contributions in different
time slots to the fusion center.

On the other hand, we consider thedistributedCS scheme
proposed in [5] based on anAmplify-and-Forward (AF)
scheme and named AF-CS throughout this paper. The authors
have already demonstrated the ability of the AF-CS algorithm
to reduce theenergy consumptionusing, at the same time,
a very limited number ofchannel usesand following the
distributedapproach of WSNs. In this paper we will address
the secrecy level of this CS scheme in presence of a group of
coordinated and passive eavesdroppers.

In order to provide the so-called physical layer secrecy, the
system takes advantage of the linear combinations that take
placeon the airthanks to theMultiple Access Channel(MAC).
This idea comes from theNetwork Codingtheory, where the
messages are not treated as indivisible, but instead, algebraic
manipulations are allowed. Roughly speaking, the signal is
encoded using thechannel matrix(i.e., thesensing matrixin
CS literature) and an eavesdropper alien to the network will
not be able to decode the signal without its knowledge.

In this paper we show that we can ensureperfect secrecyin
presence of one eavesdropper (and also in presence of a small
number of them). Therefore, many eavesdroppers working
cooperatively would be needed in order to recover the signal.

The contributions of this paper are as follows:

1) We extend our previous algorithm scheme in [5], ana-
lyzing it from a physical layer secrecy point of view.
We find out that not only it is efficient in terms of
energy and channel uses but also secure against passive
eavesdropping.



2) We present a design condition for the required number of
eavesdropping nodes to guarantee exact reconstruction
with high probability.

3) We compare our proposed AF-CS with CWS and we
find out that AF-CS dramatically increases the protection
agains eavesdropping at physical layer.

The rest of the paper is organized as follows: In Section II
we present the system model. Section III discuses the secrecy
properties of the proposed algorithm. Simulation results are
given in Section IV, and conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a WSN configured in star-topology that moni-
tors a given physical scalar magnitude (e.g., temperature,hu-
midity) or detects a physical event (e.g., wildfire). In particular
we assume the scheme in Figure 1, that is:

• A setS of S sensing nodesconnected (wirelessly) to one
fusion center. Their measurements at discrete timen are
represented byx(n).

• A subsetK(n) ⊆ S (of cardinalityK) of active sensors
that are transmitting at a given timen. The transmitted
vector isxK(n) where onlyK positions are different to
zero. The remaining sensors inQ(n) = S \ K(n) (of
cardinality Q) remain silent.

• A subsetR ⊆ S (of cardinality R) acts asrelay nodes
in AF mode.

• A set E (of cardinality E) of malicious and passive
eavesdropping nodes.

Furthermore we consider the following assumptions:

A1) The fusion centerhas perfect channel information of all
the links between a node inK(n) and a node inR. One
possibility is to estimate the channel matrix previously
during a training phaseat the network setup. On the
other hand, the nodes inE do not have the channel
information between the nodes inK(n) andR. Instead,
the eavesdroppers have a degraded version of the channel
matrix of all the links betweenK(n) andE .

A2) The fusion centerknows the second order statistics of
the signal of interest. The covariance matrix can also
be estimated during an initial training phase. Thus the
eavesdroppers do not have full access to this information.

Notation. Boldface upper-case letters denote matrices, boldface lower-case
letters denote column vectors, and italics denote scalars.(·)T , (·)∗, (·)H

denote transpose, complex conjugate, and Hermitian respectively. [X]i,j , [x]i
is the (ith, jth) element of matrixX, andith position of vectorx, respectively.
[X]i denotes theith column ofX. LetaK be aK-sparse approximation ofa.
| · | is the absolute value.‖a‖

l1
and‖a‖ mean thel1-norm and the Euclidean

norm of a respectively. Let̂a name the estimated value of variablea. E[·] is
the statistical expectation.0 denotes the zero matrix.(a)+ is the maximum
between the real valuea and zero. Leta ∼ N (µ, σ2

a) denote a Gaussian-
distributed random variable with meanµ and varianceσ2
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Fig. 1. MAC scenario composed byK active sensing nodes, R relay nodes,
E eavesdropping nodes, and onefusion center.

III. C OMPRESSEDSENSING AGAINST EAVESDROPPING

In this paper, we consider the AF-CS algorithm developed
by the authors in [5], which is summarized in the following
three phases:

1) Sensing phase. It proposes adistributed method in
order to select theK most relevant readings of the
transmitted vectorx(n) ∈ R

S based on the inner time
correlation. These readings are collected in aK-sparse
vector,xK(n) ∈ R

K and broadcasted time-synchronized
using analog transmissions to therelay nodes.

2) Projection phase. Each relay has received linear com-
binations ofxK(n) thanks to the MAC, modeled by
the sensing matrix, Φ ∈ R

R×S . Then, it relays them in
AF mode to thefusion centerusing a given orthogonal
transmission (e.g., frequency multiplexing).

3) Reconstruction phase. The fusion centercollects the
projections from all the relays in the vectory(n) and
solves thel1-norm minimization programP1 [1],

P1 : minimize
x̂K(n)∈RS

‖x̂K(n)‖l1

subject to y(n) = Φx̂K(n) (1)

in order to obtain an accurate reconstruction ofxK(n),
namedx̂K(n). Afterwards, thefusion centercompletes
the remainingQ entries of the vectorx(n) using a linear
prediction in order to get the full̂x(n).

A. Eavesdropping in the Sensing Phase

This is perhaps the most vulnerable phase of the CS
algorithm to be eavesdropped.

All the sensors inK(n) broadcast their readings, and hence
the relay sensors receive linear combinations due to the nature
of the MAC, namely,

y(n) = ΦxK(n) + zr(n), (2)

wherey(n) ∈ R
R stacks all the received signals of the nodes

in R, the sensing matrixΦ models the channel betweenK(n)



andS as a random matrix with i.i.d. gaussian entries with zero
mean and varianceσ2

Φ
. Finally, zr(n) denotes white gaussian

noise with zero mean and varianceσ2
z .

Similarly to (2), the received signal at theeth eavesdropper
is:

[ỹ(n)]e = [Φ̃]exK(n) + [ze(n)]e. (3)

whereỹ(n) stacks the signals received by the nodes inE , and
Φ̃ models the channel betweenK(n) andE and has the same
statistics ofΦ and ze(n) denotes white gaussian noise with
zero mean and varianceσ2

z
. Then, thecoordinatedeavesdrop-

pers would have to jointly solve the following problem:

P2 : minimize
x̂K(n)∈RS

‖x̂K(n)‖l1

subject to ỹ(n) = (Φ̃ + Σ)x̂K(n). (4)

where Σ ∈ R
E×S is a random matrix with i.i.d. gaussian

entries with zero mean and varianceσ2
Σ

that models the errors
in the channel estimation.

For low valuesof E (i.e., E < K) the rank ofΦ̃ + Σ is
rank(Φ̃+Σ) = E with overwhelming probability [6] and thus
the reconstruction ofxK(n) will be a E-sparse signal (instead
of K-sparse) [2]. In this case, the system experimentsperfect
secrecy. On the other hand, forhigh valuesof E (i.e.,E > K)
one cannot assure perfect secrecy. Nevertheless, in order to
ensure aperfect reconstruction, the matrixΦ̃ should hold the
Restricted Isometric Property(RIP) condition as defined next.

Definition 1 [7]: A matrix Φ̃+ Σ satisfies the RIP of order
K if there exists aδK ∈ (0, 1) such that

(1 − δK)‖x‖2 ≤ ‖[Φ̃ + Σ]Kx‖2 ≤ (1 + δK)‖x‖2, (5)

where [Φ̃ + Σ]K ∈ R
E×K is formed by retaining any set

of K (or less) columns from̃Φ + Σ and x is any arbitrary
vector of dimensionK (or less). For the ideal case ofperfect
channel estimation(i.e., Σ = 0) , the condition in equation
(5) is equivalent to require all the eigenvalues ofΩ = [Φ̃ +

Σ]TK [Φ̃+Σ]K ∈ R
K×K , to be inside the interval[1−δK , 1+

δK ] [8]. Thus, using the asymptotic results from the work of
Marc̆enko and Pastur [9], we characterize the matrixΩ as a
Wishart matrix and thus the asymptotic density function of its
eigenvalues,fΩ(λ), follows the well-known Marc̆enko-Pastur
distribution:

fΩ(λ) =

(

1 − 1

α

)+

δ(λ) +

√

(λ − λ̂min)+ · (λ̂max− λ)+

2παλ
, (6)

whereλ̂min = (1−√
α)2 andλ̂max = (1+

√
α)2 are the support

region boundaries offΩ(λ) andα = limK,E→0 K/E.
Surprisingly these results are excellent approximations even

for quite small systems [10]. For the finite case, the real min-
imum and maximum eigenvalues ofΩ, λmin andλmax can be
estimated bŷλmin and λ̂max respectively sinceE[λ{min,max}] =

λ̂{min,max} with a speed of convergenceE−2/3 as it is detailed
in [11]. To keepδK ∈ (0, 1), one needs to consider only the

λmax since theλmin is always positive becauseΩ is positive
semidefinite by definition. Thenλmax must obey:

λmax < 1 + δK < 2 =⇒ (1 +
√

K/E)2 < 2. (7)

Then, the condition for the ratioK/E, CCS, is given by

CCS : K/E < (
√

2 − 1)2 = 0.1716. (8)

Although one can think that even for the case of perfect
channel estimation the requiredE may become unpractical
for high values ofK, several more eavesdropping nodes may
be required sinceE has access only to a contaminated version
of the channel matrix̃Φ. This behavior is discussed further in
the Numerical Results section.

B. Eavesdropping in the Projection Phase

This phase is very robust against malicious and passive
eavesdropping. Although an eavesdropper can have full access
to the signal sent by the relays, i.e.y(n), to the fusion center
(assuming that this signal is not encrypted), this signal is
implicitly encoded using the MAC matrixΦ, and therefore the
eavesdroppers cannot decodexK(n) since they do not have
access toΦ [2].

Actually, this coding mechanism is not new and comes from
the well-known discipline ofNetwork Coding[12], where the
signals from different sources are not handled individually
and algebraic operations among them are allowed instead. So,
sending linear combinations of the signals offers a natural
way of protection [13]. Since this is one of the benefits of
the Network Coding and it is already discussed in e.g. [13],
we only focus on the robustness against eavesdropping on the
Sensing Phase.

IV. N UMERICAL RESULTS

The parameters that configure the basic setup of the simu-
lations are as follows:

• Number ofsensing nodes: S = 200.
• Number ofactive sensors: K = 10.
• Number ofrelay nodes: R = 60.
• Number ofeavesdropping nodes: E = [0, 110].
• Noise Power:σ2

z
= 0. Although any real application

measurement will be corrupted by at least a small amount
of noise, we setσ2

z
to zero in order to better evaluate the

system performance.

We also define the following figures of merit.

• Channel estimation distortion, D. It measures the ratio in
dB between the power of the estimation degradationσ2

Σ

and the variance of the channel coefficientsσ2
Φ

, namely,

D = 10 log

(

σ2
Σ

σ2
Φ

)

. (9)

• Probability of recovery. It measures the eavesdropper’s
reconstruction rate ofxK(n), i.e., P (x̂K(n) = xK(n))

usingP2.
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Fig. 2. Probability of recovery as a function of the channel estimation
distortion for different number of coordinated eavesdroppers forK = 10 and
S = 200. Solid lines represent the performance of AF-CS while dashed lines
denote CWS. This figure has been averaged over 1000 realizations.

First, we study the probability of recovery as a function of
the number of eavesdropping nodes using AF-CS. We observe
in Fig. 2 that the setE can only decode the signal perfectly
and with high probability for large values ofE, i.e., when
E satisfiesCCS. Moreover, we can observe that the AF-CS is
perfectly secret for values ofE < K. The valuesE > K

but below the conditionCCS can only decode the transmitted
signal with low probability.

Second, Fig. 2 also shows that the robustness of AF-CS
against eavesdropping increases rapidly with the channel esti-
mation distortion. For instance, if the channel estimationerror
is 10 times smaller that the variance of the channel coefficients,
i.e., σ2

Σ
= 0.1 σ2

Φ
, more than 110 eavesdropping nodes are

required in order to recover the signal with high probability.
Furthermore, for the case where the channel estimation error
σ2
Σ

is of the same order than the variance of the channel
coefficientsσ2

Φ
there is no configuration ofE that recovers

the signal with high probability.
Last, we compare our proposed AF-CS scheme with another

distributed CS technique, the CWS in [4]. Although CWS
has not been designed as a physical layer secure scheme,
we assess its secrecy performance since this approach is one
of the most extended CS approaches in the WSN literature
and we compare both schemes in terms of physical layer
secrecy performance. Simulation results show that a single
eavesdropper with a channel distortion of less that−15dB
suffices in decoding the transmitted signal with high probabil-
ity. Furthermore, it can be seen in Fig. 2 that for the 110
eavesdroppers configuration, the AF-CS achieves the same
performance as the CWS with only 2 eavesdroppers.

V. CONCLUSIONS

In this paper, we have evaluated thephysical layer secrecy
of a distributed compressed sensingscheme based on amplify-
and-forward relay configuration AF-CS against apassive
eavesdropper agent, which is composed by several malicious
and coordinated nodes. We have demonstrated that the system
achieves perfect secrecy for a small number of eavesdropping
nodes. For larger number of eavesdroppers we propose a
design condition based on random matrix theory in order to
guarantee perfect recovery of the transmitted signal with high
probability. The simulation results support our claim, that is,
the scheme under study is perfectly secret at physical layer
when the number of eavesdropping nodes is below the sparsity
level of the signal. On the other hand, and assuming perfect
channel estimation, high decoding rates are only achievable
when the number of eavesdroppers is large enough to hold the
restricted isometric propertycondition. Moreover, we show
that its robustness against passive eavesdropping increases
rapidly when the eavesdroppers have degraded channel es-
timations. Furthermore, AF-CS drastically outperforms other
compressed sensing solutions for wireless sensor networksin
terms of the physical layer secrecy. The secrecy performance
achieved by the scheme studied in this paper remains as an
open issue.
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