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Abstract—We study the performance of distributed source
coding in large wireless sensor networks obtained with enhanced
correlation estimators. Distributed source coding is especially
useful when data correlation exists since it tries to remove the
redundancy in the information; and dense sensor networks are
rich in correlations. Existing results from information theory
show that this compression can be executed in a distributed
fashion and without any performance loss in comparison with
the centralized approach. However, there is still performance gap
between the theoretical bounds and the results achieved with
practical implementations. In order to mitigate this, we propose
the use of enhanced correlation estimators. Simulation results
show a performance improvement in the energy consumption by
reducing the number of transmitted bits compared to classical
methods.
Topics− E-6, C-2.

I. INTRODUCTION

Currently, Wireless Sensor Networks (WSNs) have become
a hot research topic with a promising impact. In this field,
novel results have been derived in many areas, such as signal
processing and information theory. In contrast with the devices
of other networks (e.g. laptops, cellular phones, PDAs), WSNs
consist of many tiny, low-powered and un-expensive wireless
nodes. Hence, they are strongly energy-limited, and in most
cases, their battery cannot be recharged.
Following with this motivation, one can find many strategies

to mitigate the effect of energy-limited networks by applying
energy-saving mechanisms. Without the aim of being exhaus-
tive, we point out some examples; i) energy-aware routing
for cooperative wireless sensor networks and ad-hoc networks
[1], ii) signal processing techniques for minimum-power dis-
tributed beamforming [2], and iii) data-aware techniques to
reduce energy by using efficient information processing [3].
Our study falls in the third category and may be comple-
mentary to the other approaches. In this paper, we propose to
study the energy savings that we can obtain using Distributed
Source Coding (DSC) mechanisms. DSC removes the inherent
redundancy in correlated readings [3] , [4]. Typically, dense
WSNs are formed by a large number of high space-time
correlated sources (e.g. fire control in forests or monitoring the
location of the products in large stores). Surprisingly, existing
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results from information theory (precisely, from the work of
Slepian and Wolf [5]) show that this compression can be
executed in a fully blind manner, i.e. only with the knowledge
of the local data. It means that sensors carry out the data
compression without the knowledge of the other signals, and
interestingly, without any loss of performance in comparison
with the centralized approach. Theoretically, the DSC achieves
the maximum sum rate. However, practical algorithms still
perform far from the theoretical limits [4].
One of the causes is the inexact estimation of the correlation

parameters. In large WSNs this effect is aggravated because
the estimated parameters tend to be high-dimensional, and
classical methods may not be feasible in the sense that they
may need very long training phases. Instead, we propose
enhanced estimators based on Random Matrix Theory (RMT)
[6] to reduce the number of snapshots required to guarantee a
certain level of estimation accuracy.
The rest of the paper is organized as follows: In Section II,

we describe the system model. The DSC algorithm is pre-
sented in Section III. The derivation of the enhanced estimators
is provided in Section IV. Simulation results are given in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL
We assume a large WSN configured in a star topology and

composed of two types of nodes: i) S sensing nodes that
transmit the environmental measures when requested, and ii)
one fusion center that receives and processes the collected data
from the sensing nodes.
Let xs(n) ∈ R denote the scalar reading from the sth sensor

and n is the discrete time index. Matrix X ∈ RS×T assembles
the time sequence of measurements for every sensing node
(where T is the duration of the observation window). We
assume that the spatial observations present a column covari-
ance matrix denoted by Rs, and Rt is the row (temporal)
covariance matrix.

Notation. Boldface upper-case letters denote matrices, boldface lower-case
letters denote column vectors, and italics denote scalars. (·)T , (·)∗, (·)H

denote transpose, complex conjugate, and conjugate transpose (Hermitian)
respectively. [X]i,j , [x]i is the (ith, jth) element of matrixX, and ith position
of vector x, respectively. [X]i denotes the ith column of X. (·)� denotes
the optimal value. X1/2 denotes the Hermitian square root of the Hermitian
matrix X, i.e., X1/2

X
1/2 = X. �·� denotes the ceil function. E[·] is the

statistical expectation. erfc(·) represent the complementary error function.
N (μ,R) is a Gaussian vector distribution with meanμ and covariance matrix
R, σ2

x
is the variance of x. Symbol ˚ means almost sure convergence.
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III. DISTRIBUTED SOURCE CODING ALGORITHM

Although there are no practical techniques to achieve the
theoretical bounds of [5], suboptimal techniques exist. In
this paper, we will follow the approach in [7]. The authors
proposed the construction of a codebook based on the decom-
position of a given finite alphabet A in several sub-codebooks.
The transmission is divided in two phases; first, during a

training phase of length N snapshots, the sensing node uses a
uniform l-bit A/D converter to encode its reading as xs(n) ∈
A (and thus A = {ai}i=1,2...,2l , where |ai+1 − ai| = Δ).
After collecting N snapshots, the fusion center estimates the
correlation parameters. Secondly, in the coding phase, a given
side-information y(n) is available at the fusion center and the
sensing node can encode its reading using only b(n) < l bits.
Hence, what the sensor transmits is the index B of a sub-
codebook AB ⊆ A (B is codified in b(n) bits) that contains
the mapped reading xs(n). Thus, the fusion center receives
the sub-codebook identifier B, and selects the symbol in AB

closer to the side-information y(n),

xs(n) = arg min
ai∈AB

|y(n) − ai|. (1)

In the Algorithm 1, the following two key steps are high-
lighted:

Step 1. Compute the side-information y(n)

First, let us define the observation vector x(n) ∈ RM with
covariance matrix R ∈ RM×M as the information available at
the fusion node. This vector collects both the K past readings
of the sensor, and the readings of the set S′ of already-decoded
sensors in time slot n (where S′ ⊂ S with cardinality S′).
Hence M = K + S′. Then, the side-information y(n) is
computed as a linear combination of the entries of x(n), i.e.,
y(n) = w

H
x(n), following the Linear Wiener Filter (LWF)

solution. The LWF solution w
� is known to be optimal in the

Mean Square Error (MSE) sense. Mathematically,

MSE(w) = σ2
xs(n) − 2Re[wH

rx] + w
H
Rw.

∂MSE(w)

∂wH
= −rx + w

H
R = 0;

w
� = R

−1
rx, (2)

And then, the MSE achieved is minimum and is given by

MSE(w�) = σ2
xs(n) − r

H
x R

−1
rx. (3)

However, to compute w
� the knowledge of R

−1 and rx is
necessary but not available. Classical methods replace R

−1

and rx by the sample estimators denoted by R̂
−1 and r̂x,

respectively. Although when N � M this classical approach
provides good results, better estimators can be used instead
when N has the same order of magnitude as M , but still
N > M .

Algorithm 1 Fusion node
1. Training phase
for n = 1 to N do
for s = 1 to S do
Request sensor s for a l-bit reading (i.e., uncoded).

end for
end for
Estimate the correlation parameters, i.e., R and rx as in
(15) and (28), respectively.
2. Coding phase
for n > N to end do
for s = 1 to S do
Step 1. Compute side-information as y(n) = ŵ

H
x(n).

Step 2. Compute b(n) following (5).
Request sensor s for a b(n)-bit reading (i.e., encoded).
Decode xs(n) using (1).

end for
end for.

Step 2. Compute the number of bits in transmission b(n)

In order to determine the number of bits b(n) to en-
code xs(n) without decoding error, one must guarantee that
|xs(n)−y(n)| < 2b(n)−1Δ. However, since the reading xs(n)
is not yet available at the fusion center, we compute the
number of bits to encode xs(n) in order to guarantee a given
Symbol Error Rate threshold SERt.
Assuming xs(n)−y(n) ∼ N (0,MSE(w)), the SER can be

expressed as

SER = erfc

(
2b(n)−1Δ√
2MSE(w)

)
. (4)

Although we are assuming gaussianity of the estimation error,
more general approaches can be used, as e.g., the Chebychev’s
inequality in [7].
Solving for b(n) in (4) for a given SERt, we get

b(n) ≥

⌈
log2

(√
2MSE(w)

Δ
erfc−1(SERt)

)
+ 1

⌉
. (5)

Thus equation (5) requires an accurate estimation of
MSE(w) to obtain the smallest b(n) that guarantees SERt.
Either the LWF estimator or the MSE estimator should

perform the best possible when M is large. It comes from the
assumption that in large WSNs where the number of already-
decoded sensors S′ can be very large and maintain a training
phase such that N � M could not be efficient.

IV. ENHANCED CORRELATION ESTIMATORS

A. RMT Concepts and Definitions

The following definitions can be found in [8]. In this section,
let A denote a generic positive semidefinite M × M matrix.
Definition 1: Let the function FA : R → [0, 1] be the

empirical spectral distribution of the eigenvalues of A, here
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denoted as λm:

FA(x) =
1

M

M∑
m=1

I(λm ≤ x), (6)

whose Stieltjes transform is defined by (for both the continu-
ous and the finite size cases)

sA(z) =

∫
1

λ − z
dFA(λ) =

1

M

M∑
m=1

1

λm − z
. (7)

Definition 2: Let the function HA : R → [0, 1] be an
instance of the empirical distribution of the eigenvalues and
eigenvectors of A, denoted as νm:

HA(x) =

M∑
m=1

a
H

νmν
H
mb I(λm ≤ x), (8)

whose Stieltjes transform is defined by (again for both the
continuous and the finite size cases)

mA(z) =

∫
1

λ − z
dHA(λ) =

M∑
m=1

a
H

νmν
H
mb

λm − z

= a
H (A − zIM )

−1
b, z ∈ C. (9)

Definition 3: Let f̂(x) be a N-consistent estimator of f(x),
then

|f̂(x) − f(x)| −→ 0, as N → ∞. (10)

Definition 4: Let ĝ(x) be a N,M-consistent estimator of
g(x), then

|ĝ(x) − g(x)| −→ 0, as N, M → ∞; M/N → c. (11)

B. N,M-Consistent Solution for the Linear Wiener Filter

First, let us consider a collection of N random observations
of a certain M -dimensional stochastic process, denoted by
XN = [x(1)x(2) . . . x(N)]. We assume, without loss of gen-
erality, that these observations have zero mean E[x(n)] = 0,
and E[‖x(n)|2] = 1, with covariance matrix R.
The Sample Covariance Matrix (SCM), here denoted by R̂,

is constructed from the observations as

R̂ =
1

N

N∑
n=1

x(n)x(n)H =
1

N
XNX

H
N =

1

N
R

1/2
Ξ

H
ΞR

1/2,

(12)
where Ξ defines a N ×M random matrix with i.i.d. complex
entries, zero mean and unit variance. Moreover, let r̂x be
the sample cross-correlation vector between the observation
vector x(n) and the desired response xs(n), defined as

r̂x =
1

N

N∑
n=1

x(n)xs(n). (13)

The minimum MSE (MMSE) solution for the LWF satisfies
the Wiener-Hopf equations, i.e., Rw = rx, and, consequently,
the optimal weighting vector (in the MMSE sense) is (2).
Then, the classical estimator ŵclass for the solution of the LWF
(2) is given by

ŵclass = R̂
−1

r̂x. (14)

It is well-known that the classical estimator in (14) is
a N -consistent estimator of the LWF solution. In practice,
it provides good estimates when the training phase N is
sufficiently high compared to the observation dimension M .
However, when M → ∞, while M/N → c, it does not
necessarily provide N, M -consistency (e.g., [9] shows that
(14) is not N, M -consistent), and better estimators can be
derived.
Theorem 1: An N, M -consistent estimator of the LWF so-

lution is given by

ŵ = (1 − c)R̂−1
r̂x. (15)

Proof: We focus on the estimation of scalar functionals
of the inverse of R̂ i.e., ϕ(R̂−1) : RM×M → R of the type:

ϕ(R̂−1) = a
H
R

−1
b. (16)

Furthermore, for this proof, we make use of the Marc̆enco-
Pastur Theorem [10, Theorem 1], for matrices of the form
Φ = Υ + 1

N ΞRΞ
H , where:

• Υ is an arbitrary Hermitian N × N matrix.
• Ξ is an N×M matrix such that its entries are iid complex
random variables with zero mean and variance 1, i.e.
[Ξ]i,j ∈ C, E[Ξi,j ] = 0 and E[‖Ξi,j‖2] = 1.

• R is the true covariance matrix, and the empirical dis-
tribution function of its eigenvalues {λ1, λ2, . . . , λM}
converges almost surely in distribution to a nonrandom
cumulative distribution function FR(λ) as N → ∞.

Then,

sΦ(z) = sΥ

(
z − c

∫
λdFR(λ)

1 + λsΦ(z)

)
. (17)

Furthermore, we assume

Υ = 0N , and Φ =
1

N
ΞRΞ

H =
1

N
ΞR

1/2
R

1/2
Ξ

H . (18)

Hence, the Stieltjes transform of Υ is given by

sΥ(z) =
1

0 − z
= −z−1. (19)

Using (17), we get the equation

sΦ(z) = −

(
z − c

∫
λdFR(λ)

1 + λsΦ(z)

)−1

. (20)

Typically, to make Φ define an arbitrary SCM R̂, it should
have dimension M ×M rather than N ×N . So, we introduce
the M × M SCM as R̂ = 1

N R
1/2

Ξ
H
ΞR

1/2. Matrix R̂ has
the same structure than in (12).
Note that the non-zero eigenvalues of Φ and R̂ are the

same, however Φ has N − M zero eigenvalues extra. So, we
can relate the eigenvalue distributions (and hence their Stieltjes
transforms) for both Φ and R̂ as follows,

dFΦ

dλ
=

M

N

dF
R̂

dλ
+

(N − M)

N
δ(λ),

FΦ =
M

N
F

R̂
+

(N − M)

N
u(λ),

sΦ(z) = cs
R̂

(z) −
(1 − c)

z
. (21)
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Substituting (21) in (20), and after some algebraic manipula-
tions, we obtain (for both the continuous and the finite size
approach)

s
R̂

(z) =

∫
dFR(λ)(

1 − c − czs
R̂

(z)
)
λ − z

, (22)

=
1

M

M∑
m=1

1(
1 − c − czs

R̂
(z)

)
λm − z

. (23)

Following some general assumptions, the asymptotic behavior
of sA(z) and mA(z) is the same [11, Theorem 1], and hence
one can apply the results above for m

R̂
, and evaluate it for

the case of z = 0. Then

m
R̂

(0) =

M∑
m=1

a
H

ν̂mν̂
H
mb

(1 − c)λm
˚

mR(0)

1 − c
. (24)

Using Definition 2, m
R̂

(z) ˚ a
H

(
R̂ − zI

)−1

b, we obtain

(1 − c)aH
R̂

−1
b ˚ a

H
R

−1
b. (25)

In our particular case, a is selected as all-zero vector with a
one at the ith position (usually represented as ei), and b = r̂x,
then ϕ(R−1) = [w�]i.
This concludes the proof of Theorem 1. An alternative proof

can be found in [12].

C. N,M-Consistent Solution for the Mean Square Error

The MSE obtained by using ŵ from Theorem 1 is:

MSE(ŵ) = σ̂xs
− (1 − c)

(
r̂

H
x R̂

−1
rx + r

H
x R̂

−1
r̂x

)
+ (1 − c)2r̂H

x R̂
−1

RR̂
−1

r̂x. (26)

A traditional approach to estimate the MSE is by simply
replacing the true correlation parameters by their sample
estimators. In the case above (see equation (26)), one can
derive an estimator for the MSE as

M̂SEclass(ŵ) = σ̂xs
− 2(1 − c)r̂H

x R̂
−1

r̂x

+ (1 − c)2r̂H
x R̂

−1
r̂x, (27)

where σ̂xs
is the sample estimation of the signal variance σxs

,
defined in (29). The estimator M̂SEclass(ŵ) is proved to be N -
consistent (one can directly check the case when c → 0), but
indeed it is not consistent when the observation dimension M
increases without bound and at the same rate as N .
Theorem 2: An N, M -consistent estimator of MSE(ŵ) is

given by

M̂SE(ŵ) = σ̂xs
− (1 − c)r̂H

x R̂
−1

r̂x. (28)

Remark 1: Note that the approach taken in this paper is
slightly different to the MSE estimator in [13], where the
authors give an N, M -consistent estimator for the optimal
MMSE. On the contrary, in this paper we are interested in
estimating the practical MSE obtained by using a certain
weighting vector (in our case ŵ in (15)), which is not
necessary to be the MMSE lower bound.

Proof: To estimate the signal variance σ̂xs
one can use

σ̂xs
=

1

N

N∑
n=1

xs(n)2, (29)

which is N, M -consistent [14]. Furthermore, one can see that
2(1 − c)r̂H

x R̂
−1

r̂x is already a N, M -consistent estimator of
the term (1− c)

(
r̂

H
x R̂

−1
rx + r

H
x R̂

−1
r̂x

)
. The reason is that

r̂x is already an N, M -consistent estimator of r̂x. Hence, the
critical part resides in the estimation of the last term

β = (1 − c)2r̂H
x R̂

−1
RR̂

−1
r̂x, (30)

which involves both the inverse of the SCM and the true
covariance matrix.
Using the equivalence in equation (12) in (31), we get

β = N2(1 − c)2r̂H
x (R1/2

Ξ
H
ΞΞ

H
ΞR

1/2)−1
r̂x. (31)

Consequently, we can define the following two random
matrices: Γ ∈ CM×N , where Γ = 1√

N
R

1/2
Ξ

H (note that
R̂ = ΓΓ

H ); and Γ̂ = 1
N ΓΞΞ

H
Γ. Hence

β = N(1 − c)2r̂H
x (ΓΞΞ

H
Γ

H)−1
r̂x

= (1 − c)2r̂H
x Γ̂

−1
r̂x. (32)

We have observed that a good estimator for the scalar quantity
r̂

H
x Γ̂

−1
r̂x is:

r̂
H
x Γ̂

−1
r̂x ˚ (1 − c)−1

r̂
H
x R̂

−1
r̂x. (33)

Thus, using (33) in equation (31), one can estimate β as:

β̂ = (1 − c)r̂H
x R̂

−1
r̂x. (34)

Thus the proof of Theorem 2 is complete.

V. NUMERICAL RESULTS

In this section, we provide simulation results to show the
performance of the proposed methodology in comparison
with the classical approach. We also plot in the figures the
performance of the DSC algorithm for the case when the
receiver has full access to the true correlation parameters.
The parameters that configure the basic setup of the simu-

lation environment are as follows:

• Number of already-decoded sensing nodes: S′ = 200.
• Number of past samples: K = 200, hence M = 400.
• Length of the training phase: N = 1000 snapshots.
• Aspect ratio, c = 0.4;
• Correlation model, [Rs]i,i+k = [Rt]i,i+k = 0.9|k|.
• SER threshold: SERt = 10−2.
• A/D converter depth: l = 12 bits.
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Fig. 1. Comparison of the SER as a function of the SERt = 10−3 for both
the classical and proposed methods for the case of c = 0.4. This figure has
been averaged over 100 realizations.
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Fig. 2. Comparison of the SER performance of classical and the proposed
methods imposing a SERt = 10−2. It has been averaged over 100 realizations.

A. Symbol Error Rate as a function of SERt

The final purpose of DSC is the reduction of the transmitted
bits in order to reduce power consumption. However, system
requirements must be taken into account in the design phase.
Thus we analyze the performance in terms of the SER fidelity.
In other words, we compare the SER obtained with the
proposed and classical techniques as a function of the SERt.
Graphically, Fig. 1 shows the SER performance for the case

c = 0.4. Ideally, the SER performance curve should be below
but as close as possible to the SER threshold (the solid line
in the figure). Our proposed method is actually below the
threshold, except for a small area around SERt = 10−3. The
curve is staircase-shaped due to the ceiling function of (5).
On the contrary, the classical approach does not fit the

system requirements. One possible solution to counteract this
effect is to increase the training phase N (i.e., decrease c).

B. Symbol Error Rate as a function of c

We set the SER threshold of 10−2. Fig. 2 shows that
the tendency of the classical DSC approach is to fulfill the
SER requirements only for high values of c−1 due to its N-
consistency property. However for low values of N (i.e., when
the ratio c increases), it cannot fit the system requirements.
One can observe that the classical method requires a train-

ing phase at least eight times longer than the observation
dimension M to fulfill the SERt. On the other hand, using
the proposed estimators, one can guarantee the requirements
even for values of c close to one.

VI. CONCLUSIONS
This paper has proposed a DSC algorithm for large WSNs

based on enhanced correlation estimators. It presents a full
derivation of these estimators under a RMT framework.
Specifically, we present two estimators for each key step of
the DSC algorithm; i) the computation of the side-information,
and ii) the bit rate required to guarantee a certain SERt.
When we compare the resulting SER for short training

phase, we observe that our proposed method performs far
better under a given SER requirement. Moreover, it performs
as the corresponding SCM estimators when the training phase
increases. In practice, it allows to reduce largely the training
phase in DSC schemes.
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