
OSNMAlib Improvements and Real-Time
Monitoring of Galileo OSNMA

Aleix Galan
ESAT

KU Leuven
Leuven, Belgium

0000-0002-5762-6982

Cristian Iñiguez
Dept. of Telecommunications

UAB
Barcelona, Spain

0009-0000-8950-2776

Ignacio Fernandez-Hernandez
DG DEFIS

European Commission
Brussels, Belgium

0000-0002-9308-1668

Sofie Pollin
ESAT

KU Leuven
Leuven, Belgium

0000-0002-1470-2076

Gonzalo Seco-Granados
Dept. of Telecommunications

UAB
Barcelona, Spain

0000-0003-2494-6872

Abstract—Galileo will declare OSNMA (Open Service Naviga-
tion Message Authentication), a civil GNSS signal authentication
scheme, operational in the near future. OSNMAlib, an open-
source library that implements OSNMA, was presented two
years ago after the test phase of the protocol started and has
since undergone several upgrades. In this paper, we disclose
these upgrades, which comprise new input sources, new features
and optimizations, and the creation of an OSNMA real-time
monitoring website. For each input source (SBF, UBX, GNSS-
SDR and galmon), we describe how can they be integrated
with an OSNMA library and what pitfalls to avoid. The new
features include data retrieval and time to first authenticated fix
optimizations and a new logging format aimed at researchers.
This logging format is used in osnmalib.eu website to display, in
a friendly and understandable way, the live Galileo and OSNMA
messages and the OSNMAlib authentication output. Additionally,
the website also provides the I/NAV data bits to help snapshot
receivers and other GNSS-based applications.

Index Terms—Global navigation satellite system, Galileo, OS-
NMA, OSNMAlib, Authentication

I. INTRODUCTION

Galileo is the first GNSS constellation to add authentication
to their civil signals. The authentication is meant to protect the
users against spoofing, the transmission of forged GNSS-like
signals that induce a wrong position and time fix. This protec-
tion is offered at navigation message level, using the Galileo
OSNMA (Open Service Navigation Message Authentication)
protocol.

OSNMA is a cryptographic protocol that leverages the
unpredictability of the transmitted bits and the verification of
these bits at a later time, a variation of the TESLA (Timed
Efficient Stream Loss-Tolerant Authentication) protocol [1].

This research was partially funded by the Research Foundation Flanders
(FWO) Frank de Winne PhD Fellowship, project number 1SH9424N (Aleix
Galan).

A spoofer crafting a false signal is not able to guess the
cryptographic material, but any receiver can verify the cor-
rectness of the bits once received. These types of Navigation
Message Authentication (NMA) techniques have already been
described over the last decades [2]. However, their adoption
was held back due to the need to modify the navigation
message structure to accommodate them [3] [4]. For the last
two years, OSNMA has been transmitted in the Galileo E1-
B signal in test mode, and it is expected to be declared
operational in the near future [5].

At the start of the test transmission, we presented OSN-
MAlib [6] [7], an open-source OSNMA library. The library,
written in Python, can easily be used for research purposes
and to add OSNMA support to GNSS receivers. Now, with
the imminent operational declaration of the service, we present
the library improvements. The enhancements are focused on
optimizing data extraction in harsh environments, improving
the time to first authenticating fix, the addition of new GNSS
input sources, and a refreshed logging system.

Over the last years, other open-source OSNMA imple-
mentations have emerged. A well-maintained and interesting
implementation is galileo-osnma [8] written in Rust and aimed
for embedded devices, released under a permissive license.
Another notable implementation that is also open-source is
fgi-osnma [9], by the Finnish Geospatial Research Institute,
which allows to integrate OSNMA to their GNSS software-
defined receiver.

In this paper, we present the newly added input sources to
OSNMAlib (SBF, UBX, GNSS-SDR and galmon) and give
recommendations to other libraries willing to incorporate the
same input sources. Then, we disseminate the new optimiza-
tions and logging features implemented in OSNMAlib. Finally,
we introduce a real-time OSNMA monitoring website [10] that
we build using OSNMAlib, which includes the exposure of
navigation message bits.979-8-3503-8078-1/24/$31.00 ©2024 IEEE

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 L

oc
al

iza
tio

n
an

d
GN

SS
 (I

CL
-G

N
SS

) |
 9

79
-8

-3
50

3-
80

78
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
L-

GN
SS

60
72

1.
20

24
.1

05
78

48
7

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

II. OSNMA AND OSNMALIB

Galileo OSNMA is transmitted within the Galileo I/NAV
message structure for the E1-B signal. The I/NAV message
is structured in 15 two-second nominal pages of 240 bits
each that are grouped in a 30-seconds sub-frame. The nominal
pages are divided into even and odd pages of 120 bits each, and
together transmit a Word Type (WT). The WTs encapsulate
Galileo navigation data and are what OSNMA authenticates.
The page structure is represented in Fig. 1.

The OSNMA data message is transmitted in batches of 40
bits on each nominal page. These bits are concatenated at the
end of each sub-frame to create complete OSNMA structures.
These structures are the HKROOT (Header and Root Key),
with 120 bits, which transmits the long-term authentication
data to verify the keys; and the MACK (MAC and Key),
with 480 bits, which transmits the authentication tags for
the navigation data and the authentication key. For further
details, the complete OSNMA specification is available in the
OSNMA SIS ICD [11] and in the receiver guidelines [12].

An external library willing to process OSNMA needs first
access to the navigation data message, or at least to the bits
containing the WTs and the 40 bits of OSNMA message, and
the Satellite Vehicle ID (SVID) to which the navigation data
belongs. Additionally, OSNMA needs to know the Galileo
Satellite Time (GST) computed by the GNSS receiver to
validate some protocol time constraints. Moreover, in an
offline scenario, accessing the receiver computed time is the
only way to post-process OSNMA.

In OSNMAlib, the input data is encapsulated in an object
that contains the I/NAV message data from E1-B (240 bits),
the GST in Time Of Week (TOW) and Week Number (WN)
at the beginning of the page transmission, and the SVID. Any
OSNMAlib input source must be created as a Python iterator
abstraction that returns one of these objects at every iteration
of the library reception loop. Using this technique, the origin

Fig. 1. Nominal page structure from the Galileo I/NAV message transmitted
in the E1-B signals, from the Galileo ICD [13].

Fig. 2. Simplified UML diagram of OSNMAlib. The InputModule is an
abstract class that needs to be particularized for each input type. There may
be 2 TeslaChain objects when the TESLA Key is being renewed.

of the input data does not matter for OSNMAlib and can come
from heterogeneous sources.

A simplified architecture of OSNMAlib is shown in Fig.
2. As previously discussed, the library gets the input data
from an iterator: this is done in the OSNMAReceiver
module. This module also sends the navigation pages to the
NavigationDataManager and reconstructs the OSNMA
messages distributed in multiple pages and sub-frames. For
this last purpose, it uses the Satellite class. Then, the OS-
NMA messages are relied to the OSNMAReceiverState
class that interprets them and keeps the internal state
of the library. Based on the OSNMA messages informa-
tion, the OSNMAReceiverState class decides to call
the different OSNMA functions such as update the public
key, create a new TESLA chain, authenticate a TESLA
key, verify authentication tags, etc. The authentication tags
are stored in the class TagStateStructure that be-
longs to a TeslaChain, because the configuration of the
TESLA chain in force defines the format of the tags. Fi-
nally, when an authentication tag needs to be verified, the
TagStateStructure class requests the necessary naviga-
tion data to the NavigationDataManager.

OSNMAlib allows the user to configure several parameters
of the execution; one of the most important is the Time Lag
(TL) value, which defines the synchronization lag between
the receiver sourcing the navigation data and the GST. The
security of the OSNMA protocol can only be guaranteed if this
value is known because it defines which authentication tags
can be safely used for authenticating navigation data. Another
relevant configuration parameter available in OSNMAlib is the
re-use of already available cryptographic data to speed up the
bootstrap of OSNMA (the so-called warm start and hot start
procedures).

III. DATA INPUT SOURCES

The data input sources for OSNMAlib have been expanded
substantially since the start of the Galileo OSNMA test phase.
This section provides a detailed description on how to add
these input sources to any OSNMA library and the problems

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

one may encounter. In addition to the inputs listed here,
OSNMAlib supports the official OSNMA test vector format
[12]. Moreover, in the OSNMAlib repository, we provide
guidance on how to develop and integrate new input sources.

A. Septentrio: SBF

SBF is the binary output format of Septentrio receivers. This
format encapsulates semantically similar data into SBF blocks.
All blocks have a header with, among others, the block type
and a time stamp in WN and TOW, which interpretation is
block dependent.

The interesting SBF block for an OSNMA library is the
GALRawINAV block. This block contains 234 bits of an
I/NAV navigation page, which results from the concatenation
of the even and odd sub-pages minus the six trail bits. The
block also contains the SVID and signal from which the
message was received. Finally, the time stamp in the block
header corresponds to the time of transmission of the last bit
in GPS time.

To adapt the SBF format to OSNMA input we first have
to correct the time stamp. OSNMA expects the time in GST
convention and referring to the transmission of the first bit
of the navigation message. Therefore, we must subtract 1024
weeks from the WN to change from GPS time to GST and two
seconds to the ToW to move to the beginning of the page. Next
we have to regenerate the 240 bits that OSNMAlib expects by
adding the six removed trail bits required for the convolutional
code, which must be zero-filled. Finally, OSNMAlib currently
only supports E1-B, so the blocks need to be filtered by the
signal indicator.

We developed an OSNMAlib input module for three SBF
sources: a file, a TCP client and a TCP server. The file
source allows to post-process any log file that contains the
GALRawINAV block. The TCP sources (client and server)
are developed with real-time processing in mind, because
Septentrio receivers can serve SBF from or to TCP ports.

B. u-blox: UBX

The u-blox receivers binary output format is called UBX
and consists of frames that contain different data. Even though
UBX has the RXM-SFBRX frame that provides the I/NAV
page bits and SVID, this frame lacks the TOW and WN,
which are essential for the correct functioning of OSNMAlib.
To address this issue, we can use other frames from the
UBX protocol that include both TOW and WN, such as the
TIM-TP, NAV-TIMEGAL, NAV-TIMEUTC, NAV-TIMEGPS,
and NAV-TIMEBDS. Note that the time information extracted
from these frames needs to be converted to GST.

If OSNMAlib has no access to the time frames, for example
if a file was recorded without them, both TOW and WN must
be calculated. For a real-time case, the computer clock can be
utilized to precisely calculate the TOW and WN. This strategy
requires to first initialize both TOW and WN with a value
transmitted in one of the word types, and subsequently update
the time using the computer clock. On the other hand, in the
case of UBX files, the absence of time frames complicates

Time frames

available
Time frames not available:

using computer clock
Time frames

available

Exact TOW and WN

Time frames not available:
estimated TOW and WN

TOW and WN not

guaranteed

u-blox input

FilesReal-time

Fig. 3. OSNMAlib calculation of GST for the u-blox receiver input source
depending on the available data.

the exact calculation of the TOW and WN, and need to be
approximated. The different possibilities when using a UBX
output stream are shown in Fig. 3.

The proposed strategy when post-processing a file without
time frames is based on the known sequence of word types in
a sub-frame, as defined in the Galileo ICD [13]. The algorithm
starts by extracting the TOW from a WT 0, 5 or 6 and then
updates the TOW based on the next WT received using a
lookup table. The lookup table (shown in Table I) indicates
the seconds elapsed between the previous and current WTs.
Therefore, if pages are lost, the receiver can determine how
much time has passed between them. Of course, when a WT
containing a TOW is received, the internal TOW is verified
and adjusted.

However, this process lacks accuracy and may fail to
produce correct results. The first problem is that the WT
sequence described in the Galileo ICD is indicative an may
have deviations. A known source of deviations are satellites
with the health status bits in the navigation message set
different than 0. The WT from these satellites need to be
excluded from the algorithm. The second problem is that, if
the receiver does not receive pages for more than one sub-
frame, the estimation of the first new pages received can be
inaccurate. Therefore, whenever possible, it is advisable to use
the aforementioned time frames.

TABLE I
LOOKUP TABLE WITH SECONDS ELAPSED BETWEEN A PRIOR NOMINAL

PAGE AND A CURRENT ONE ACCORDING TO THE GALILEO ICD [13].

Current WT

Prior 2 4 7 8 17 19 16 22 1 3
WT 9 10 18 20

2 30 2 6 8 10 12 14 18 20 22
4 28 30 4 6 8 10 12 16 18 20

7/9 24 26 30 2 4 6 8 12 14 16
8/10 22 24 28 30 2 4 6 10 12 14

17/18 20 22 26 28 30 2 4 8 10 12
19/20 18 20 24 26 28 30 2 6 8 10

16 2 4 8 10 12 14 14 4 6 8
22 12 14 18 20 22 24 10 30 2 4
1 10 12 16 18 20 22 8 28 30 2
3 8 10 14 16 18 20 6 26 28 30
0 4 6 8 10 12 14 2 2 4 6
5 6 8 10 12 14 16 4 24 26 28
6 26 28 30 4 6 8 10 14 16 18

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

C. GNSS-SDR

GNSS-SDR [14] is an open-source GNSS software-defined
receiver written in C++ that supports multiple constellations,
including Galileo, and real-time kinematics (RTK) positioning.
The receiver is highly configurable using a text-based file and
completely independent of the radio-frequency front-end used.
Therefore, any user can record a GNSS signal (e.g. with a
software-defined radio), process it with the receiver (in real-
time or in post-process), and obtain a precise position and time
fix in a variety of output formats.

To integrate GNSS-SDR to OSNMAlib we need to access
the navigation message bits, which in GNSS-SDR is done
using what they call a telemetry decoder block. The software
offers several telemetry decoders, but we are interested in the
Galileo_E1B_Telemetry_Decoder that decodes the
INAV message of E1-B signal component. To retrieve the
decoded bits we use another of the receiver features, which
sends the output information by the telemetry decoders to an
IP and UDP port. The configuration needed in the GNSS-SDR
configuration file to enable all these features is presented in
Listing 1.

The navigation messages are sent to the UDP port encapsu-
lated using the protobuf [15] standard. Each protobuf structure
contains the GNSS constellation, signal and SVID to which
the bits belong, the TOW of the last symbol received, and
the navigation message bits. For Galileo I/NAV, each message
contains the 120 bits of a half page (even or odd).

The first issue when integrating GNSS-SDR’s output to
OSNMAlib is the lack of WN in the protobuf structure. We
solved this by discarding the navigation message received until
we receive a Word Type 0 or 5 and extract the WN from it. We
also provide the users with an option to set the WN themselves.
The second issue is that OSNMAlib works with full pages, not
with half pages. Therefore, we have to save the even page in
memory until the corresponding odd page is received before
concatenating and transferring them to the library. Finally, we
need to offset the TOW to align it with the beginning of the
full page.

1 TelemetryDecoder_1B.implementation =
Galileo_E1B_Telemetry_Decoder

2 NavDataMonitor.enable_monitor = true
3 NavDataMonitor.client_addresses = 127.0.0.1
4 NavDataMonitor.port = 1234

Listing 1. GNSS-SDR configuration needed to extract Galileo E1-B
navigation data bits and send them to a UDP port at 127.0.0.1:1234.

D. Galmon network

The galmon network [16] is an open-source project that
aggregates GNSS data from receivers around the globe for
monitoring purposes. They have a dashboard for the main
GNSS constellations and signals, with live information about
the satellite status and data transmitted. Additionally, they have
recently introduced a historical data dashboard. Any user can

contribute or receive data from the distributed network; hence
it is an attractive way to use OSNMAlib without any receiver.

Explicitly for disseminating OSNMA data bits, they fa-
cilitate the endpoint 86.82.68.237:10000 where every
I/NAV message being send in the network is redirected. The
navigation messages are again encapsulated using the protobuf
standard but in a different format than the one mentioned in
III-C.

Each protobuf structure has a header with metadata about
the galmon network’s receiver and the type of message sent.
We are interested in the Galileo I/NAV structure, which con-
tains the GNSS constellation, signal and SVID from where the
navigation message bits were retrieved, the time information
(WN and TOW), and the proper I/NAV bits. However, the
I/NAV bits are fragmented in multiple fields instead of being
a continuous 240-bits stream.

To integrate galmon with OSNMAlib, we do not need to
reconstruct the full I/NAV message; we only need the field
named contents, which stores the navigation word data, and
the field named reserved1, which stores the 40 OSNMA
bits. The rest of the 240 bits can be set to 0.

There are two considerations consider when integrating
galmon with an OSNMA library. The first is that, at the time
of writing this paper, the algorithm used by the network to
estimate the TOW of pages coming from u-blox receivers
does not take into consideration the latest changes in the
Galileo ICD. Currently, the word type 16 is transmitted in
the eighth and fifteenth page positions, but previously it was
only transmitted in the eighth. Thus, it always gets assigned
a page eight TOW. The solution implemented in OSNMAlib
(described in Fig. 4) is to keep in memory a TOW counter to
check if the word type 16 is transmitted in the new position
with the wrong TOW value.

Fig. 4. Fix at library level to correct the assignation by galmon of the TOW
for the WT 16.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

The second consideration is that the messages in the net-
work do not necessarily follow a chronological order, some
receivers send messages delayed by a few seconds. Also, the
same page can be received multiple times coming from differ-
ent receivers in the network. OSNMAlib filters the messages
to not use twice the same page, and to use only the most recent
ones.

IV. NEW FEATURES

A. Protocol optimizations

To optimize the retrieving of OSNMA data in environments
with fading, such as urban scenarios, OSNMAlib implements
a page-level processing of partially received sub-frames. This
strategy was first described in [17] and greatly improves the
Time To First Authenticated Fix (TTFAF) and continuous
authentication of navigation data.

This approach allows the extraction of each authentication
tag individually instead of parsing a fully received sub-frame.
In this way, even if only two pages out of the fifteen that
form the sub-frame are correctly received, it may be possible
to obtain tags from them. The position of each tag in the tag
sequence shall still be verified.

The page-level processing also enables to reconstruct a
sub-frame’s TESLA key from pages belonging to multiple
satellites. All satellites transmit the same TESLA key at the
same epoch; therefore, if OSNMAlib is not able to receive a
complete TESLA key from any satellite but receives enough
fragments in different pages, it can regenerate the key.

Another optimization in OSNMAlib is the link between
authentication tag and navigation data to be authenticated
using the new Cut-off Point (COP) field. OSNMAlib already
implemented an intelligent way of linking tag and data using
the Issue of Data (IOD) value to merge navigation data
belonging to multiple sub-frames. Now, with the introduction
of the COP field in the last OSNMA protocol version, this
optimization is taken further allowing to safely assume that the
data from one sub-frame was also transmitted in the previous.
This assumption allows to get times to first authenticated fix
in hot start as low as 44 seconds [18].

B. OSNMAlib sub-frame logging

The first version of OSNMAlib had only one logging stream
that reported all OSNMA events in chronological order. That
is, every time a new page was processed, everything triggered
by the information on that page was reported. Although this
logging stream provides interesting information for debugging
purposes, it tends to be too verbose.

With the extraction of relevant metrics from OSNMA in
mind, we developed a new logging stream that reports at
the end of every sub-frame (i.e. every 30 seconds) on the
state of OSNMAlib. This logging option presents in a clear
and readable format the following information per sub-frame:
navigation data received, OSNMA data received, OSNMA
status, and authenticated data. Fig. 5 shows an example of how
the information is displayed in a console. Additionally, the
logging stream can be configured to log in pure json format for

Fig. 5. Example of the OSNMAlib status logging in a urban scenario with
severe fading. During the sub-frame at GST 1267 35460 multiple pages were
lost, which impacted in the number of words extracted and OSNMA data.
It also displays the last authenticated OSNMA status information and the
currently authenticated navigation data.

an easy ingest in any tool willing to process it. Both logging
options can be enabled and disabled independently, and both
can log to console or to a file.

V. OSNMA STATUS WEBSITE

A. OSNMAlib dashboard

Using the new sub-frame status logging of OSNMAlib
described in IV-B we have created a website osnmalib.eu [10]
to monitor in real-time the status of OSNMA. Currently, the
website runs two parallel OSNMAlib instances: one process-
ing data from a Septentrio mosaic-X5 receiver [19] located
at KU Leuven, Belgium; and the other processing global
aggregated data from the galmon network.

After each sub-frame, the dashboard displays the last au-
thenticated OSNMA status information, the number of satel-
lites in view and the subset of those transmitting OSNMA,
the information obtained from each satellite, and the data
authentication output. The information retrieved for a satellite
is presented as shown in Fig. 6. The navigation data word types
are grouped per authentication tag type, and the OSNMA tags
indicate for which satellite is the tag, the COP value, and if
it is a flex tag. The tag color indicates the tag type: blue for
ADKD0, orange for ADKD4, and pink for ADKD12. The
TESLA key received is provided under the tags.

The accumulated navigation data information for each satel-
lite is displayed as shown in Fig. 7. Each color represents a tag
type in the same sequence mentioned above. The first column

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Data blocks obtained from satellite 15 in the last sub-frame as
displayed in the OSNMAlib website.

Fig. 7. Navigation data authentication status for satellite 15 as displayed in
the OSNMAlib website.

contains the Issue of Data (IOD) to identify the navigation
message being authenticated, except for ADKD4 whose words
do not contain an IOD. The next column indicates the GST of
the last verified tag for the navigation data. The last column
contains the accumulated bit-length of tags verified for the
navigation data, an indirect metric to the number of tags
verified.

B. Navigation message bits endpoint

Another feature of the osnmalib.eu website is the exposure
of the raw I/NAV message as received by OSNMAlib in
json format through the /septentrio/subframe_bits
and /galmon/subframe_bits endpoints. The navigation
message bits are provided per sub-frame, identified by the
WN and TOW, and organized per satellite. Each satellite
contains 15 pages of 240 bits with the navigation message
in hexadecimal. If a page is lost the value for the page is
null. Fig. 8 shows how the json structure looks like.

The endpoints return the last 12 sub-frames bits from the
selected receiver. The decision of saving 12 sub-frames is to
always have in memory an ADKD12 tag and the applicable
TESLA key (transmitted with an additional delay of 10 sub-
frames).

Snapshot GNSS receivers may use these navigation data
bits to compare the unpredictable OSNMA bits they receive
with the OSNMA bits coming from a reliable source which
is using OSNMA. Doing this check, they can achieve some
level of assurance on the signal authenticity without having to
implement the complete OSNMA protocol [20], also known
as Assisted NMA [21].

Additionally, the bits may be used by any other OSNMA
library or GNSS-based application that needs to process navi-
gation messages but does not have access to a GNSS receiver.

Fig. 8. Example of the I/NAV bits as retrieved from the osnmalib.eu website.
The json structure contains the last 12 sub-frames received by OSNMAlib,
and each sub-frame contains the WN, the TOW and the bits from each satellite
organized in 240 bit pages.

VI. CONCLUSION

In this paper, we presented the last updates on OSN-
MAlib, an open-source library to process the Galileo OSNMA
protocol. Moreover, we discussed how distinct data sources
(SBF, UBX, GNSS-SDR, galmon) can be added to OSNMA
libraries, focusing on possible pitfalls and recommendations.
Additionally, we presented the osnmalib.eu website, where
real-time information of the OSNMA protocol can be con-
sulted, alongside with the navigation data bits being processed
by the library.

On the analysis of multiple GNSS data sources, we noticed
that only Septentrio receivers provide a somewhat straightfor-
ward way of using their output for OSNMA processing. All the
other sources considered lacked some key information, usually
the time reference. We expect that, as OSNMA increases in
popularity, more GNSS products will enable proper logging
options for OSNMA applications.

With the exposure of the navigation data bits from the
OSNMAlib website, we try, on the one hand, to become
a source of GNSS data for applications, and, on the other
hand, to help the developing and testing of OSNMA snapshot
authenticated receivers.

Currently, osnmalib.eu only displays instantaneous data,
which is refreshed every 30 seconds. An historical visual-
ization of OSNMA data could be extremely useful for the
GNSS community and be used for the analysis of OSNMA
coverage, the cross-authentication algorithm, and numerous
other applications.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Perrig, J. Tygar, A. Perrig, and J. Tygar, “TESLA broadcast au-
thentication,” Secure Broadcast Communication: In Wired and Wireless
Networks, pp. 29–53, 2003.

[2] L. Scott, “Anti-spoofing & authenticated signal architectures for civil
navigation systems,” in Proceedings of the 16th International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION
GPS/GNSS 2003), 2003, pp. 1543–1552.

[3] T. E. Humphreys, “Detection strategy for cryptographic GNSS anti-
spoofing,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 2, pp. 1073–1090, 2013.

[4] I. Fernandez-Hernandez, V. Rijmen, G. Seco-Granados, J. Simon,
I. Rodrı́guez, and J. D. Calle, “A navigation message authentication
proposal for the Galileo open service,” NAVIGATION: Journal of the
Institute of Navigation, vol. 63, no. 1, pp. 85–102, 2016.

[5] M. Götzelmann, E. Köller, I. Viciano-Semper, D. Oskam, E. Gkougkas,
and J. Simon, “Galileo open service navigation message authentication:
Preparation phase and drivers for future service provision,” NAVIGA-
TION: Journal of the Institute of Navigation, vol. 70, no. 3, 2023.

[6] A. Galan, I. Fernandez-Hernandez, L. Cucchi, and G. Seco-Granados,
“OSNMAlib: An Open Python Library for Galileo OSNMA,” in 2022
10th Workshop on Satellite Navigation Technology (NAVITEC), 2022,
pp. 1–12.

[7] A. Galan, I. Fernandez-Hernandez, G. Seco-Granados.
(2024) OSNMAlib. GitHub repository. [Online]. Available:
https://github.com/Algafix/OSNMA

[8] D. Estévez. (2024) galileo-osnma. GitHub repository. [Online].
Available: https://github.com/daniestevez/galileo-osnma/

[9] T. Hammarberg, J. M. V. Garcı́a, J. N. Alanko, and M. Z. H. Bhuiyan,
“FGI-OSNMA: An Open Source Implementation of Galileo’s Open
Service Navigation Message Authentication,” in Proceedings of the 36th
International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS+ 2023), Denver, Colorado, September 2023,
pp. 3774–3785.

[10] A. Galan and S. Fontfreda. (2024) OSNMAlib website. Accessed:
February 8, 2024. [Online]. Available: https://osnmalib.eu/

[11] “European GNSS (Galileo) Open Service, Galileo OSNMA SIS ICD,
Issue 1.1,” European Union, Tech. Rep., Oct 2023.

[12] “European GNSS (Galileo) Open Service, Galileo OSNMA Receiver
Guidelines, Issue 1.3,” European Union, Tech. Rep., Jan 2024.

[13] “European GNSS (Galileo) Open Service, Signal-In-Space ICD, Issue
2.1,” European Union, Tech. Rep., Nov 2023.

[14] C. Fernández-Prades. (2024) GNSS-SDR. CTTC. Open-source GNSS
software-defined receiver. [Online]. Available: https://gnss-sdr.org

[15] Google. (2024) Protocol buffers - google developers. Accessed on:
March 7, 2024. [Online]. Available: https://protobuf.dev/

[16] B. Hubert. (2024) Galmon network. GitHub repository. [Online].
Available: https://github.com/berthubert/galmon

[17] S. Damy, L. Cucchi, and M. Paonni, “Performance Assessment of
Galileo OSNMA Data Retrieval Strategies,” in 2022 10th Workshop on
Satellite Navigation Technology (NAVITEC), 2022.

[18] A. Galan, I. Fernandez-Hernandez, W. De Wilde, S. Pollin, and G. Seco-
Granados, “Improving galileo osnma time to first authenticated fix,”
arXiv preprint arXiv:2403.14739, 2024.

[19] Septentrio NV. (2024) mosaic-X5 GNSS receiver
module. Accessed: February 28, 2024. [Online].
Available: https://www.septentrio.com/en/products/gps/gnss-receiver-
modules/mosaic-x5

[20] H. Shahid, L. Canzian, C. Sarto, O. Pozzobon, J. Reyes-González,
G. Seco-Granados, and J. A. López-Salcedo, “Spoofing Detection
Performance of Snapshot OSNMA Under Time and Symbol Errors,”
in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall),
2023, pp. 1–7.

[21] C. O’Driscoll, J. Winkel, and I. Fernandez-Hernandez, “Assisted NMA
proof of concept on Android smartphones,” in 2023 IEEE/ION Position,
Location and Navigation Symposium (PLANS). IEEE, 2023, pp. 559–
569.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 22,2024 at 12:34:07 UTC from IEEE Xplore. Restrictions apply.

