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Abstract—The utilization of the millimeter-wave frequency band
(mm-wave) in the fifth generation (5G) of mobile communication is
a highly-debated current topic. Mm-wave MIMO systems will use
arrays with large number of antennas at the transmitter and the
receiver, implemented on a relatively small area. With the inherent
high directivity of these arrays, algorithms to help the user
equipment find the base station and establish a communication
link should be carefully designed. Towards that, we examine
two beamforming schemes, namely, random-phase beamforming
(RPBF) and directional beamforming (DBF), and test their impact
on the Cramér-Rao lower bounds (CRB) of jointly estimating the
direction-of-arrival, direction-of-departure, time-of-arrival, and
the complex channel gain, under the line-of-sight channel model.
The results show that the application of RPBF is more appropriate
in the considered scenario as it attains a lower CRB with fewer
beams compared to DBF.

I. INTRODUCTION

One of the enabling technologies of the fifth generation of
mobile networks (5G) is the millimeter-wave technology (mm-
wave) [1], [2]. Mm-waves allow packing high number of an-
tennas in a relatively small area due to their small wavelengths
– from 1 mm to 1 cm. In addition, the massively available
spectrum of mm-wave would easily enable the transmission
with extremely high data rates [3]. These two reasons reinforce
the role that the mm-wave technology can play in 5G.

Due to the special characteristics of the mm-wave channel,
directional transmission with large-size arrays, at both the
transmitter and the receiver, is going to be utilized [4]. However,
when initiating a communication link, this high directionality
is an issue for a user equipment (UE) trying to find the base
station (BS), and vise versa, especially that omni-directional
transmission with antenna arrays is a challenge itself [5], [6].

The mm-wave initial access (IA) techniques with analog
beamforming were reviewed in [7]. The three approaches
compared therein include two direction-based methods, namely
exhaustive search and iterative search. The third method is
GPS-assisted algorithm. The disadvantage of these approaches
is mainly the delay of finding the proper transmission direction.

In contrast to the directional methods covered in [7], we
focus on random beamforming. The concept of random beam-
forming is not new per-se. Randomly-directional beamforming
is a method of opportunistic beamforming that was investigated
in [8], [9] for mm-wave receivers. Under this scheme, the
BS generates narrow beams with random directions and select

the user with the highest signal-to-noise ratio. On the other
hand, optimization-based random beamforming in [6] optimizes
the beamforming weights so that the resulting beam pattern
is omni-directional. The work therein focused on conven-
tional multiple-input-multiple-output (MIMO) systems in the
microwave band. Despite the advantage of omni-directional
coverage in the AI phase, the cost function is complex and,
for a high number of antennas, it is only solvable numerically.
Another random beamforming investigated under conventional
MIMO is the unitary beamforming, whereby the beamforming
matrix is obtained by the singular value decomposition of the
channel matrix, see for example [10]. This is not applicable in
an IA scenario since the channel is unknown at that phase.

The Cramér-Rao lower bounds (CRB) of a line-of-sight
(LOS) mm-wave channel parameters were previously studied
in [11]. Therein, the CRBs were provided as a function of the
Fisher information matrix (FIM), whose entries were given by
high level expressions and are valid for uniform linear arrays
(ULA) with directional beamforming (DBF).

In this paper, we investigate a random beamforming scheme,
referred to as random-phase beamforming (RPBF). Under this
scheme, the beamforming vector is generated as a vector of
complex exponentials with independent and identically dis-
tributed (i.i.d.) random phases. This scheme is used in [12] to
initiate an iterative beamforming scheme which assumes full
channel knowledge, and in [13], which assumes the direction-
of-departure (DOD) to be known. However, these two assump-
tions are not used in this paper. We look into the IA problem
for a LOS mm-wave channel. Towards that, we study the effect
of beamforming on the estimation bounds of the direction-of-
arrival (DOA), DOD, time-of-arrival (TOA), and the complex
channel gain. The current paper presents the CRB expressions
for an arbitrary array geometry. Moreover, as a special case, we
obtain expressions of CRB, using ULA, simpler than those in
[11]. Although mm-wave may apply different array geometries,
ULA is the standard array structure that is usually used to get
initial insights. Finally, we investigate and assess the RPBF
and DBF in terms of the CRB, as a function of the number of
transmit antennas, receive antenna and transmit beams.

II. PROBLEM FORMULATION

Consider the scenario illustrated in Fig. 1, where the receiver
and the transmitter are equipped with arrays of NR and NT
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Fig. 1. A schematic diagram of the considered scenario. Angles are positive
clockwise. D0 is the transmitter-receiver separation distance.

antennas, respectively. Without loss of generality, we consider
the uplink and assume that the BS and UE are located in
the same plane. Consequently, we consider a 2D approach.
Moreover, similar to [11], we assume that the UE and BS
communicate via a LOS path only. In fact, the effect of NLOS
links is limited, since 1) the path loss exponent is much higher
than the case of LOS, and 2) the absorption loss is high and
results in weak reflections. These factors cause NLOS to have
20 dB less power than LOS at 38 GHz [14]. Furthermore,
we assume that the transmit antenna array is rotated by an
unknown angle α. Finally, we assume that the arrays are
narrow-band, i.e., the signal traverses the arrays apertures, both
at the transmitter and the receiver, within a fraction of a symbol
duration. That is Amax = cµTs, where Amax is the maximum
array aperture, c = 3 × 108 m/s is the speed of light, Ts is
the symbol duration, and 0 < µ < 1. Based on the above
assumptions, the channel matrix is modeled by [4]

H ,
√
NRNTβaR(θR)a

H
T (θT ) ∈ CNR×NT ,

where β = βR + jβI ∈ C is the complex channel gain, θR is
the DOA, and θT is the DOD. Under mm-wave channel, DOD
is crucial in beamforming, since the knowledge of DOD would
enable more efficient beamforming[12]. Moreover, aR(θR) ∈
CNR is the receiver array response vector, and aT (θT ) ∈ CNT

is the transmitter array steering vector. As an example, for the
particular case of ULA, these two vector are given by (18) and
(17). For notation simplicity, we drop the angle parameter from
aR(θR) and aT (θT ). These two vectors are normalized so that
‖aR‖2 = ‖aT ‖2 = 1. Therefore, the received signal at the
analog output of the array at a time instant t, can be written as

r(t) , [r1(t), r2(t), ..., rNR
(t)]T , ∈ CNR , t ∈ [0, To],

= Hx(t− τ) + n(t). (1)

where To = NsTs is the observation time and Ns is
the number of pilot symbols. Moreover, τ ∈ R+ is the
propagation delay of the transmitted signal and is related
to the transmitter-receiver distance , D0, by τ = D0/c.
Furthermore, n(t) , [n1(t), n2(t), ..., nNT

(t)]T ∈ CNR de-
notes zero-mean additive white Gaussian noise processes with
noise power σ2

n , WN0/2, where N0/2 is the noise spec-
tral density, and W is the signal bandwidth. Furthermore,
x(t) , [x1(t), x2(t), ..., xNT

(t)]T ∈ CNT is the transmit-
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Fig. 2. Beam patterns generated using DBF (left) and RPBF (right) with
NT =32 and NB=24. For directional beamforming, ψ` = (−90◦ + 7.2◦`).

ted signal vector at the output of a beamforming matrix
F , [f1, f2, ...fNB

] such that x(t) =
√
PtFs(t) and s(t) ,

[s1(t), s2(t), ..., sNB
(t)]T , where NB is the number of trans-

mitted beams and Pt is the transmitted power. Moreover,

s`(t) =

Ns−1∑
k=0

a`,kp(t− kTs), ` = 1, ..., NB

where a`,k is the kth pilot symbol transmitted over the `th

beam, and p(t) is a unit-energy pulse. To keep the transmitted
power fixed, regardless of the number of antennas, NT , we
normalize F such that Tr

(
FHF

)
= 1, and E{s(t)sH(t)} = I.

Matrix F is modeled in two ways: directional and random.
These models and the differences between them are discussed
in detail in the sequel of Section III.

Our aim is to investigate the impact of beamforming schemes
on the estimation lower bounds of φ = [θR, θT , β, τ ]

T based
on the observed signal, r(t).

III. RANDOM-PHASE BEAMFORMING AND DIRECTIONAL
BEAMFORMING

In this section, the two considered beamforming schemes
are defined. The impact of these two schemes on the joint
estimation of DOD, DOA, TOA and channel gain is investigated
in subsequent sections. The first scheme we consider is DBF,
which spatially steers the transmission beams towards the
azimuth angles ψ`, 1 ≤ ` ≤ NB such that

f` ,
1√
NB

aT (ψ`), (2)

where d, and λ denote the inter-antenna spacing and the carrier
wavelength, respectively. The DBF in (2) has been used in
several works on mm-wave, for example, see [11].

On the other hand, the RPBF generate beams with uniformly
distributed random phases such that

f` ,
1√

NTNB
[ejϑ`,1 , ..., ejϑ`,NT ]T , (3)

where ϑ`,n ∼ U(0, 2π). Although, practical phase shifters
generate quantized phases, recently, phase shifters for mm-wave
with 3.5◦ phase resolution were proposed [15], [16].

Note that in (3) the phase is random, in contrast to the scheme
in [8], [9], which have a structure similar to (2), but with a
random direction. Moreover, note that both (2) and (3) have
‖f`‖2 = 1

NB
. This implies that increasing the number of beams,



will linearly scale down the power per beam to preserve the
constant transmitted power condition.

A nice feature of (3) is that the generated beams are not too
narrow compared to those of DBF as shown in Fig. 2. Thus,
RPBF exhibits a better spatial coverage, which is an essential
feature when the initial direction of transmission is unknown.

IV. CRAMÉR-RAO LOWER BOUND

A widely used performance measures in estimation theory
is the Cramér-Rao lower bound (CRB) [17]. CRB provides a
lower bound for the variance of an unbiased estimator of a given
parameter. We use the CRB to compare the best performance
of RPBF and DBF in the scenario described in Section II.

The CRB of estimating φ for an arbitrary array geometry
is derived in Appendix A. Subsequently, for the case of ULA,
we show in Appendix B that the CRBs for jointly estimating
θR, θT , β and τ are given by

CRB(θR) =
12

γN3
R[Q]1,1

( λ

2πd cos θR

)2
, (4)

CRB(θT ) =
[Q]1,1

γNR det(Q)

( λ

2πd cos θT

)2
, (5)

CRB(β) =
2|β|2

γNR[Q]1,1

(
2NR − 1

NR + 1
+

[Q]1,1[Q]2,2
2 det(Q)

)
, (6)

CRB(τ) =
1

γσ2
pNR[Q]1,1

. (7)

where γ = NTNsPt|β|2/σ2
n and σ2

p ,
∫∞
−∞

(
∂p(t)
∂τ

)2
dt,

Q ,

[
aHT FFHaT aHT DTFFHaT

aHT DTFFHaT aHT DTFFHDTaT

]
,

and DT , diag(0, 1, 2, ..., NT − 1).

A. DBF Analysis

Define ϕ` , (2πd/λ)
(
sin θT − sinψ`

)
. Then, for DBF

[Q]1,1 =
1

N2
TNB

Nb∑
`=1

1− cosNTϕ`
1− cosϕ`

, (8)

[Q]2,2 =
1

2N2
TNB

Nb∑
`=1

N2
T −NT

1− cosϕ`
+

1 + cosNTϕ

(1− cosϕ`)2
, (9)

Qr , <{[Q]1,2} =
(NT − 1)

2
[Q]1,1, (10)

Qi , ={[Q]1,2} =
1

N2
TNB

× (11)

Nb∑
`=1

(1− cosNTϕ`) sinϕ` −NT (1− cosϕ`) sinNTϕ`

(1− cosϕ`)
2 .

Note that (8)–(11) imply that the performance of DBF is highly
governed by the difference between θT and ψ`. Ideally, the
difference should be zero to achieve the lowest CRB. Moreover,
carefully inspecting (8)–(11), one can notice the averaging over
NB . Thus, after a certain value of NB , increasing NB has a
little effect on the CRBs, and a performance floor is reached.

Since NT and NB will be typically very large, it is meaning-
ful to analyze the limiting behavior of the elements and determi-
nant of Q with NT . When considering the relationship between
DBF CRB and NT , we can see that there are two components
in (8)–(11); a short-term harmonic component represented by
cos(NTϕ) and a long-time trend represented by a polynomial
of NT . Focusing on the long-term trend, it can be noticed that
[Q]1,1 ∼ O( 1

N2
T
), the real and imaginary parts of [Q]1,2 ∼

O( 1
NT

),det(Q) ∼ O( 1
N2

T
), while [Q]2,2 is constant. Conse-

quently, we can deduce that CRB(θR) ∼ O(NT ),CRB(θT ) ∼
O( 1

NT
),CRB(β) ∼ O(NT ), and CRB(τ) ∼ O(NT ).

Due to the fixed transmit power constraint, higher NT
means narrower beams, and higher received power in a certain
direction as implied by (2). If that direction mismatches θT ,
the CRBs of θR, β, and τ tend to worsen when NT increases.

B. RPBF Analysis

For the RPBF case, since both NT and NB are typically high,
we resort to the law of large numbers to compute the average
CRB. Denoting the expected value by E{·}, we calculate
E{[Q]1,1}, E{[Q]2,2}, and E{det(Q)}, to obtain the limiting
behavior of (4)–(7) as

E{[Q]1,1} = aHT E{FFH}aT =
aHT aT
NT

=
1

NT
, (12)

E{[Q]2,2} =
aHT D2

TaT
NT

=

∑NT−1
i=0 i2

N2
T

≈ NT
3
, (13)

E{[Q]1,2} =
aHT DTaT
NT

=

∑NT−1
i=0 i

N2
T

≈ 1

2
, (14)

E{det(Q)} ≈ 1

NT

NT
3
−
(1
2

)2
=

1

12
. (15)

The results in (12)–(15) imply that CRB(θT ) ∼ O(1/N2
T ),

while CRB(θR),CRB(β), and CRB(τ) are constant in NT
and NB . In contrast to DBF, increased NT does not decrease the
spatial coverage. Thus, higher NT does not affect the received
power in average, and the CRBs of θR, β, and τ stay constant.

V. SIMULATION AND NUMERICAL RESULTS

With reference to the scenario illustrated in Fig. 1, we
consider a receiver equipped with a ULA lying in the x-axis
with d = λ/2, and covering a spatial field (−π/2, π/2). The
transmitter, operating at f = 38 GHz, is assumed to be tilted
with an orientation angle α measured from the positive x-
axis. Without loss of generality, we select α = 0. The DODs
and DOAs are measured clockwise from the line normal to
the array. The BS is assumed to be located at the origin,
while the UE is located at p = (5, 25) meter. This results in
θR = θT = 11.3◦. Similar to [18], the complex channel gain is
computed using the free-space propagation model, leading to
β = βR + jβI = −(56.5 + j53.7)× 10−3. Moreover, we con-
sider p(t) to be a unit-energy ideal sinc pulse. Consequently,
it follows from Parseval’s theorem that

σ2
p =

4

3
π2W 2, (16)
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Fig. 3. CRB w.r.t NB using RPBF (dashed line) and DBF (solid line) with
NR = 64, NT = 32. Directional beams are equally spaced over (-π/2, π/2)

where W = Rb/2b, and Rb is the bit rate, and b is the number
of bits per symbol. We present the results for 1 Gbps bit rate and
16 QAM transmission, i.e., W = 125 MHz. Furthermore, we
assume σ2

n = 20 dBm, and Pt = 1 W. To improve the results
presentation, we provide the CRB(τ) in terms of CRB(D0).

For DBF, the directions are chosen to be equally spaced to
cover the region (−π/2, π/2), i.e., ψ` = −π2 + π`

NB+1 , 1 ≤
` ≤ NB . Finally, in the following results, when referring to
RPBF, CRB means the average CRB. RPBF plots are obtained
by Monte-Carlo simulation averaged over 1000 iteration.

A. Effect of NB on the CRB

Fig. 3 illustrates the CRB as a function of NB with NT = 32
and NR = 64. It can be seen that, using RPBF, the CRB floor
is reached at NB = 18. Also, note that for NB < 10 the
average CRBS of θR and D0 are less sensitive to NB compared
to those of θT , and β. On the other hand, the CRB under
DBF is non-monotonic. Thus, NB should be carefully chosen
for optimum estimation. However, since in the initial access
phase the transmitter has no information on the direction of
transmission, an optimal beam is not guaranteed.

Comparing RPBF with DBF in Fig. 3, it can be inferred that
the RPBF scheme attains a lower floor at a low NB than the
DBF, except when the latter happens to have a beam close to
the receiver direction. To see why the CRB floors, notice the
averaging effect in (8)–(11), and the independence of NB in
(12)–(15). Intuitively, recall that with a fixed NR the receiver
beam-width about θR is fixed. Consider the RPBF case shown
in Fig. 2. When NB is small, there is a limited chance that a
random transmit beam will hit θR with a suitable gain, but
as NB goes up, this chance enhances and the CRB starts
to decrease. As NB grows significantly, the resultant beams
becomes almost omni-directional and, regardless of how high
NB is, the CRB becomes fixed. On the other hand, consider
the DBF case in Fig. 2, where beams have a comb-like shape
and the CRB mainly depends on the difference between the
transmit beams and the receive beam. As NB grows higher,
more transmit beams fall within the the receive beam-width.
However, since ‖f`‖2 = 1/NB , the received power stays fixed,
and the CRB floor is reached.

20 40 60 80 100 120 140 160 180 200

NR

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

C
R
B

CRB(θR)
CRB(θT )
CRB(β)
CRB(D0)

Fig. 4. CRB w.r.t NR using RPBF (dashed line) and DBF (solid line) with
NB = 18, NT = 32. Directional beams are equally spaced over (-π/2, π/2)

B. Effect of NR on the CRB

The CRBs as function of NR are provided in Fig. 4. In both
schemes, CRBs of θT , β, and τ decrease as 1/NR. On the other
hand, CRB of θR decreases by three orders of magnitude, when
NR increases by one order of magnitude. In addition, these
results confirm the conclusion made using Fig. 3 in that RPBF
provides better bounds than DBF does, when NB is fixed.

C. Effect of NT on the CRB

Fig. 5 illustrates the results of investigating the CRB in terms
of NT . Considering DBF, it is hard to draw any conclusion for
scaling factors in terms of NT due to the high non-linearity
observed and represented by (8)–(11). However, there is an
average trend that can be seen, as discussed in Section IV,
whereby CRB(θT ) decreases with 1/N2

T while the other CRBs
increase with NT . As for RPBF, it can be seen from the figure
that only the estimation of θT improves when increasing NT .
Note that due to the power normalization discussed in Section
II, the CRBs of β and θR are not affected by an increased NT .

D. Summary of Results

From Figs. 3 – 5, it can be inferred that RPBF outperforms
DBF in terms of the channel parameters CRBs, except in some
cases shown in Fig. 3, where a few NB choices can results in
a better DBF performance. Note that in these cases a beam or
more are close enough to the receiver direction, hence the better
CRB. However, since at the IA stage the receiver location is
unknown, a careful choice of NB cannot be made for DBF. As
a result, RBPF is more reliable in this case during AI phase.

VI. CONCLUSION

Mm-wave MIMO is a very promising technology for future
mobile communication. In this paper, we have studied the
impact of two beamforming schemes on the CRB of estimating
DOA, DOD, TOA, and complex channel gain. RPBF has shown
better CRB floor at a smaller number of beams than DBF. Thus,
as shown by the numerical results, it would be favorable to use
RPBF in the initial access phase. Table I summarizes the CRB
scaling factors in terms of NR, NT and NB . As future work, we
will consider mm-wave channels with multi-path propagation
and carry out an analytical investigation of RPBF and DBF.
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APPENDIX A
CRB(φ) FOR AN ARBITRARY GEOMETRY

Consider the received signal model in (1). Let

µ(φ) , Hx(t− τ) =
√
NRNTPtβaRaHT Fs(t− τ).

Using arbitrary array geometries at the transmitter and receiver,
the corresponding steering vectors are given by

aT =
1√
NT

e−jk
T (θT )vnt , nt = 1, 2, ..., NT . (17)

aR =
1√
NR

e−jk
T (θR)unr , nr = 1, 2, ..., NR, (18)

where kT (θ) = 2π
λ [sin(θ), cos(θ)] is the wavenumber vector,

and un and vn are vectors of the Cartesian coordinates of
the nth antenna at the receiver and the transmitter, in meters,
respectively. We start by computing FIM

[I(φ)]p,q ,
1

σ2
n

To∫
0

<

{(∂µH(φ)

∂φp

)(∂µ(φ)
∂φq

)}
dt, (19)

where φp is the pth element in φ, 1 ≤ p, q ≤ 5. Consequently,

∂µ(φ)

∂θR
= −j

√
NRNTPtβmKRaRa

H
T Fs(t− τ), (20)

∂µ(φ)

∂θT
= j
√
NRNTPtβmaRa

H
T KTFs(t− τ), (21)

∂µ(φ)

∂βR
=
√
NRNTPtaRa

H
T Fs(t− τ), (22)

∂µ(φ)

∂βI
= j
√
NRNTPtaRa

H
T Fs(t− τ), (23)

∂µ(φ)

∂τ
= −
√
PtHF

∂s(t− τ)
∂τ

, (24)

KR , diag

(
∂kT (θR)

∂θR
[u1,u2, ...,uNR ]

)
,

KT , diag

(
∂kT (θT )

∂θT
[v1,v2, ...,vNT ]

)
.

Define the following matrices

Σ0 ,

To∫
0

s(t− τ)sH(t− τ) dt = NsI,

TABLE I
SCALING EFFECT ON CRBS FOR HIGH NT AND NB .

NR NT (RPBF) NT (DBF) NB

CRB(θR)
1
N3

R
constant O (NT ) constant

CRB(θT )
1
NR

O
(

1
N2

T

)
O
(

1
NT

)
constant

CRB(β) 1
NR

constant O (NT ) constant

CRB(τ) 1
NR

constant O (NT ) constant

Σ1 ,

To∫
0

s(t− τ)∂sH(t− τ)
∂τ

dt = 0,

Σ2 ,

To∫
0

∂s(t− τ)
∂τ

∂sH(t− τ)
∂τ

dt

=

∞∫
−∞

(
∂p(t− τ)

∂τ

)2

dtNsI , σ2
pNsI.

Note that the derivative of an even function is odd, and the
product of an even and an odd functions is odd. The integral of
an odd function over its domain is zero. Consequently, Σ1 = 0.

From Section II, φ1 = θR. Thus, substituting (20) into (19),
and using aHbcHd = cHdaHb, it is easy to show that

[I(φ)]1,1 =
NRNTNsPt|β|2

σ2
n

aHRK2
RaRaHT FFHaT . (25)

Define ζ , NTNsPt/σ
2
n. Subsequently, it can be shown that

[I(φ)]2,2 = ζNR|β|2aHT KTFFHKTaT , (26)

[I(φ)]3,3 = [I(φ)]4,4 = ζNRaHT FFHaT , (27)

[I(φ)]5,5 =
PtNsσ

2
p

σ2
n

Tr(HFFHHH), (28)

[I(φ)]1,2 = −ζNR|β|2aHRKRaR<{aHT KTF FHaT }, (29)

[I(φ)]1,3 = ζNRβIa
H
RKRaRaHT FFHaT , (30)

[I(φ)]1,4 = −ζNRβRaHRKRaRaHT FFHaT , (31)

[I(φ)]2,3 = −ζNR<{jβ∗aHT FFHKTaT }, (32)

[I(φ)]2,4 = ζNR<{β∗aHT FFHKTaT }, (33)
[I(φ)]1,5 = [I(φ)]2,5 = [I(φ)]3,5 (34)

= [I(φ)]4,5 = [I(φ)]3,4 = 0. (35)

Now that we obtained FIM, the CRB can be derived from [17]

CRB(φ) = diag
(
I−1(φ)

)
. (36)

From (25)–(35), it can be seen that I(φ) is block diagonal.
Thus, for φ̄ = [θR, θT , βR, βI ]

T , (36) can be written as

CRB(φ) =

[
diag

(
I−1(φ̄)

)
[I(φ)]−15,5

]
. (37)

To compute I−1(φ̄), we start by defining the following[
R1

R2

]
,

[
aHRKRaR
aHRK2

RaR

]
,

T1T2
T3

 ,

 aHT FFHaT
aHT KTFFHaT

aHT KTFFHKTaT

 ,



[
S1

S2

]
,

[
−(βITR + βRTI)
βRTr − βITI

]
, T2 , TR + jTI ,

and γ , NTNsPt|β|2/σ2
n. Consequently, from (25)–(35),

I(φ̄) ,
γNr
|β|2

[
A U

UT C

]
=
γNr
|β|2
× (38)

|β|2R2T1 −|β|2R1TR βIR1T1 −βRR1T1
−|β|2R1TR |β|2T3 S1 S2

βIR1T1 S1 T1 0
−βRR1T1 S2 0 T1


By block-matrix inversion,

CRB

([
θR
θT

])
=
|β|2

γNR
diag

[(
A−UC−1UT

)−1]
, (39)

CRB

([
βR
βI

])
=
|β|2

γNR
diag

[
C−1UT

(
A−UC−1UT

)−1
UC−1 + C−1

]
(40)

We now proceed to evaluate (39) and (40). Directly from (38),

A−UC−1UT = |β|2
[
T1(R2 −R2

1) 0

0
(T1T3−|T2|2)

T1

]
, (41)

C−1UT
(
A−UC−1UT

)−1

UC−1 +C−1 =
1

|β|2T1
× β2

IR
2
1

R2−R2
1
+ S1

T1T3−|T2|2
+ |β|2−βIβRR

2
1

R2−R2
1

+ S1S2
T1T3−|T2|2

−βIβRR2
1

R2−R2
1

+ S1S2
T1T3−|T2|2

β2
RR

2
1

R2−R2
1
+ S2

T1T3−|T2|2
+ |β|2

 . (42)

APPENDIX B
CRB FOR A ULAFor a ULA,

R1 = (2πd/λ) cos(θR)a
H
RDRaR

= (πd/λ) cos(θR) (NR − 1) , (43)

R2 = (2πd/λ)
2
cos2(θR)a

H
RD2

RaR

=
2

3
(πd/λ)

2
cos2(θR)(NR − 1)(2NR − 1), (44)

where DR = diag(0, 1, 2, ..., NR − 1). Moreover[
T1 T2

T2 T3

]
=

[
[Q]1,1

2πd
λ

cos(θR)[Q]1,2
2πd
λ

cos(θR)[Q]1,2
(
2πd
λ

)2
cos2(θR)[Q]2,2

]
(45)

where Q ,

[
aHT FFHaT aHT DTFFHaT

aHT DTFFHaT aHT DTFFHDTaT

]
,

DT , diag(0, 1, 2, ..., NT − 1), and [Q]1,2 , QR + jQI .
Substituting (43)–(45) in (41), then in (39) yields

CRB(θR) =
12

γN3
R[Q]1,1

( λ

2πd cos θR

)2
,

CRB(θT ) =
[Q]1,1

γNR det(Q)

( λ

2πd cos θT

)2
.

Note that since βR and βI are independent, the CRB of β
can be simplified to CRB(β) = CRB(βR) + CRB(βI). Thus,
substituting (43)–(45) in (42), and taking the trace, yields

CRB(β) =
2|β|2

γNR[Q]1,1

[
2NR − 1

NR + 1
+

[Q]1,1[Q]2,2
2 det(Q)

]
.

Finally, following from (28) and (37), it is easy to see that

CRB(τ) =
1

γσ2
pNR[Q]1,1

.
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