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9.1 Introduction

The rapid increase of mobile data volume, the use of smartphones, and the global
bandwidth shortage are the main challenges for current wireless networks. At any
given location, the maximum available bandwidth for all cellular technologies is
780 MHz with the carrier frequencies ranging from 700 MHz to 2.6 GHz [43].
A tenfold increase of the data rate requires an almost unavoidable increase of
the available bandwidth. Given that the goal is to have available a bandwidth on
the order of GHz for high data rate communication with low latency and higher
localization accuracy, millimeter wave (mm-wave) frequencies are considered as
one of the best candidates. Moreover, increasing the bandwidth provides a better
time resolution, thereby ensuring the accurate estimation of the time-of-arrival
(TOA) that is used for localization. Figure 9.1 shows that the mm-wave spectrum
ranging from 30 to 300 GHz provides more spectrum in bands not previously
used in cellular. Particularly, for carrier frequencies fc < 6GHz the spectrum
has a maximum bandwidth B D 0:555GHz, in the centimeter wave (cm-wave)
frequencies it is possible to achieve a bandwidth B D 1:3GHz with fc D 28GHz.
In the mm-wave frequencies, we achieve a unlicensed bandwidth B D 7GHz at
fc D 60GHz. Spatial processing techniques relying on massive Multiple Input,
Multiple Output (MIMO) transceivers can also be applied in mm-wave frequencies
[46]. Moreover, the spectral allocations in mm-wave frequencies are closer to each
other than pieces of spectrum used by the cellular operators nowadays, which are
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Fig. 9.1 Mm-wave spectrum
for 5G
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scattered between 700 MHz and 2.6 GHz. This makes mm-wave frequencies more
homogenous. Despite the aforementioned advantages, using mm-wave frequencies
presents some challenges including path-loss and atmospheric attenuation.

However, it has been shown that attenuation due to rain and atmospheric absorp-
tion has a negligible impact on the mm-wave at 28–38 GHz for small distances (i.e.,
less than 1 km). Due to attenuation at mm-wave frequencies, directional antennas1

can be used at the transmitters and receivers to overcome the path-loss effects. Using
a large number of antennas provides narrow beams towards the user that makes
the mm-wave link highly directional. Moreover, the large bandwidth at the mm-
wave frequencies provides TOA estimates of high accuracy. Higher directionality
and higher TOA estimation accuracy lead to better localization accuracy [66].

Furthermore, the location of the user is extremely important for the transmitter in
highly directional communication. Knowing the location of the user the transmitter
can steer the beam directly or to a reflected path. For the case that the line-of-
sight (LOS) is blocked, steering the beam to the reflected path with the strongest
signal power can be helpful for user localization. The data transmission is increased
based on the statistical channel knowledge for user location. This leads to a synergy
between localization and communication. In today’s technologies such as Global
Positioning System (GPS), accurate location information cannot be provided for
indoors and in urban canyons. Other technologies such as Ultra Wide Band (UWB)
can provide indoor localization with the cost of high hardware complexity [53].
Also, WiFi can provide indoor localization at low cost but not so high accuracy as
GPS outdoors and UWB indoors [16].

1Directional antenna is an antenna designed to radiate or receive greater power in specific directions
allowing for reduced interference from unwanted sources.
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The use of 5G technologies to obtain position and orientation was previously
explored in [14, 47, 60] for mm-wave and in [17, 25, 49] for massive MIMO. Beam
training protocols through direction of arrival2(DOA) were considered in [47].
A hypothesis testing user localization approach was presented in [14] using the
concept of channel sparsity that is due to few and clustered paths. These methods
limit virtual angle spacings 1=NTx and 1=NRx due to the limited number of antenna
elements in the transmitter NTx and receiver NRx. Localization based on received
signal strength (RSS) was considered in [60]. This approach provides meter-
level positioning accuracy. A method to estimate the position of the user devices
using an extended Kalman filter combined with travel time of the signal from the
transmitter to the receiver (TOA) and DOA estimations in the uplink was proposed
in [28, 62]. This method assumes LOS propagation, thanks to the high density of
the access nodes and it estimates the clock offsets between user nodes. A method
based on DOA and RSS estimation for non-cooperative transmitter localization
was considered in [63]. This method uses an antenna structure that can selectively
receive energy from different sectors (sectorized antennas) to obtain sector-powers
as sufficient statistics for DOA and RSS estimation. However, the method assumes
that different samples in a sectorized antenna are received sequentially in time, what
can slow down the localization. Using massive MIMO systems, the work in [25]
considered AOA/angle-of-departure (AOD)3 estimation for localization, and [17]
considered the localization in an LOS scenario by joint TOA, AOA, and AOD.

In this chapter, it is shown that mm-wave and massive MIMO, both candidates for
5G networks, are also enabling technologies for localization. First, a brief overview
of 5G systems and the main challenges including path-loss effects are provided.
Different path-loss models are presented and the main differences between the path-
loss effects in the mm-wave frequencies and UWB systems are explained. For the
sake of comparison, UWB systems are used due to providing higher localization
accuracy for indoor applications compared to WiFi. Since the estimation of mm-
wave channels is of critical importance for user localization, the physical channel
model for mm-wave systems together with the limited scattering property is
presented. This property leads to the sparsity of the mm-wave channels, which
differs from UWB channels since the later are rich in scattering. It is demonstrated
that the TOA, AOA, and AOD can be estimated using the sparsity of the mm-
wave channels. Hybrid beamformers are explained as the most promising solution
for accurate beam steering in mm-wave; they can be used to generate narrow
beams used for the user localization by beam training protocols. Finally, different
localization techniques based on the TOA, AOA, and AOD and their combination
are presented as the promising solutions in the mm-wave frequencies.

2DOA or angle-of-arrival (AOA) is defined as the angle between the received beam with respect to
a reference line in the receive antenna array.
3AOD is defined as the angle between the transmitted beam with respect to a reference line in the
transmit antenna array.
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This chapter is organized as follows. Section 9.2 briefly explains the relation
between 5G and cognitive radio for localization. Section 9.3 represents an overview
of 5G systems. Section 9.4 proposes a physical channel model in the mm-wave
frequencies and the sparsity in delay and angle subspace. Section 9.5 provides an
overview of the hybrid beamformers and beam training protocols for AOA and AOD
estimation. Section 9.6 presents different localization techniques based on combined
delay and angle information. Section 9.7 provides the simulation results. Section 9.8
concludes the chapter.

9.2 The Relation Between 5G and Cognitive Radio
for Localization

Both 5G and cognitive radio are considered as future technologies. The future
5G networks require low cost, high spectral efficiency with the large number of
connected devices, and low latency. One of the promising techniques to meet
these requirements is cognitive radio. Specifically, cognitive radio increases spectral
efficiency using opportunistic and shared spectrum access. In particular, the location
of a primary user enables several key capabilities in cognitive radio such as spatio-
temporal spectrum sensing, intelligent location-aware power control and routing, as
well as aiding security and spectrum policy enforcement. When GPS information
is unavailable due to either cost considerations or other limitations, different
localization techniques introduced in this chapter for 5G networks including DOA
and RSS can be used for primary user localization in cognitive radio [61].

9.3 On 5G Systems

In this section, we briefly describe 5G systems, their properties, and benefits. First,
mm-wave systems are explained in terms of their carrier frequencies, bandwidth,
and data rate. Second, the benefits and challenges of the massive MIMO systems
are described. Third, the concept of device-centric architecture in 5G systems
is addressed. Finally, the concepts of device-to-device (D2D) communication,
location-aware communications, and ultra dense networks are described.

9.3.1 Mm-Wave

The mm-wave band provides 5G systems with an amount of bandwidth on the order
of GHz. Some of the implications of using the mm-wave spectrum include:

• The possibility to use of cognitive radio techniques to share the spectrum with
satellite or radar systems.
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• The capability to generate very narrow beams with smaller directional and
adaptive antenna arrays, thanks to small wavelength.

Moreover, mm-wave can provide high peak, average and outage rates on the order
of gigabit per second (Gbps), as required in different 5G scenarios, e.g., autonomous
driving.

9.3.2 Massive MIMO

Massive MIMO systems can operate either at mm-wave frequencies or lower ones
[56]. Massive MIMO systems are considered as systems with large number of
antenna elements4 in the transmitter NTx 	 1 and with P single-antenna or multi-
antenna terminals. To suppress interference and achieve the sum capacity of the
multi-user channel, it is required to have P channel vectors mutually orthogonal
(favorable propagation). For the case of mutually non-orthogonal channel vectors,
advanced signal processing methods (e.g., dirty paper coding [8]) are used. Favor-
able propagation can be achieved with sufficiently large number of antenna elements
NTx (e.g., NTx D 100) for a given number of single-antenna terminals P (e.g.,
P D 12) in Non Line-of-Sight (NLOS) environments with rich scattering or LOS
environments with dropping a few worst terminals that cause non-orthogonal chan-
nel vectors. Massive MIMO enables simple spatial multiplexing/de-multiplexing
procedures. However, channel estimation is a challenging step in the massive MIMO
systems. The channel coherency is limited by the propagation environment, user
mobility, and the carrier frequency that limits the number of orthogonal pilots.
Moreover, reuse of pilots leads to pilot contamination that needs to be mitigated
[10]. Figure 9.2 shows a massive MIMO system in the uplink and downlink for LOS
propagation with the Base Station (BS) equipped with NTx antennas that serves P
single-antenna terminals.

9.3.3 Device-Centric Architecture

Device-centric architectures provide a promising approach to meet the increasing
demand for throughput that is required by applications in today’s mobile devices,
such as video streaming that requires at least 0:5 Mbps data rate. The uplink and
downlink as well as control and data channels need to be reconsidered. In particular,
the cell-centric architecture should evolve into a device-centric meaning that a given
device should be able to exchange multiple information flows through different sets
of heterogeneous nodes [5]. Figure 9.3 shows the cell-centric and device-centric
networks where in the cell-centric network each user is communicating with the BS

4At a typical cellular frequency of 2 GHz; the wavelength is 15 cm and up to 400 dual-polarized
antennas can thus be deployed in a 1.5 m � 1.5 m array.
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uplink

downlink

Fig. 9.2 Illustration of the massive MIMO system in the uplink and downlink for LOS propagation

cell-centric device-centric

Fig. 9.3 Illustration of the cell-centric (left) and the device-centric network (right)

of the same cell directly while in the device-centric network each user can cooperate
with the other users directly or act as a relay to other users for the communication
with the BS or other users. More details on the different types of device-to-device
communication are described later in this section.

Among the device centric and massive MIMO for 5G, mm-wave is a good
candidate for localization due to higher bandwidth and smaller size of antenna arrays
due to smaller wavelength. This enables highly directional links that are the key
for the estimation of AOA/AOD for localization purposes. Consequently, the main
focus is on the mm-wave localization for the rest of this chapter.
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9.3.3.1 Device-Centric and Cell-Centric Positioning

In cell-centric localization, each agent communicates with multiple anchors.5 This
requires high density of the anchors and long-range transmissions. In device-
centric localization, the agents can obtain the information from both anchors and
agents. Consequently, high anchor density or long-range transmissions are no longer
required [64]. If an agent cannot obtain its position based on distance estimates with
respect to the anchors, device-centric localization is used to cooperatively obtain the
position. This increases localization accuracy and coverage.6

9.3.4 D2D Communication

D2D communication can potentially reduce latency and power consumption and
increase peak data rates. In the device-level 5G cellular network, each device
communicate directly to another device or through the support of other devices.
The BS either partially or fully controls resource, destination, and relaying devices
or not have any control. Four types of device-level communications are briefly
described [58].

9.3.4.1 Device Relaying Communication with Base Station
Controlled Link

For a device located at the edge of a cell, the signal strength is poor and it is required
to communicate with the BS by relaying the information through the other devices.

9.3.4.2 Direct Device-to-Device Communication with Base Station
Controlled Link

In this architecture, the two devices are directly communicating with the links
information provided by the BS.

9.3.4.3 Device Relaying Communication with Device Controlled Link

Both communication and links information are provided by the other devices and
the BS is not involved in communication and link information.

5At least three anchors are required for 3D localization.
6The fraction of nodes with accurate location estimate is called coverage.
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9.3.4.4 Direct Device-to-Device Communication with Device
Controlled Link

Two devices are directly communicating and the link information is controlled by
the devices.

Two of the most important challenges in D2D communication are security
and interference management [9]. Security is important due to the fact that the
routing of information is through the other users. Interference becomes important
especially for the case of device relaying communication with device controller and
direct device-to-device communication where the centralized methods cannot be
employed.

9.3.5 Location-Aware Communications

5G networks can benefit from location information. In particular for the case of D2D
resource allocation, D2D links share the same cellular resources that potentially
interfere with each other. For instance, for the case of reusing the uplink resources,
D2D transmissions interfere with cellular transmissions at the base station. To limit
the interference, either maximum transmission power should be limited or D2D
should not be allowed in the regions close to the base station. Consequently, position
information of the user is of critical importance for resource allocation to ensure
sufficiently large physical separation between the D2D and base station. To this end,
distance and virtual sectoring based resource allocation techniques are proposed
in [29]. Distance based resource allocation uses a pre-selected distance constraint
to control interference between D2D and cellular nodes. Virtual sectoring based
resource allocation relies on AOA measurements. In this approach, a D2D pair will
reuse the radio resource that belongs to the vertically opposite sector based on the
specified number of virtual sectors in the cell.

Another method to minimize the interference to the primary users in cognitive
radio is the spatial spectrum sensing that can be adapted in 5G. In this approach,
Gaussian processes (GPs) are used for predicting location-dependent channel
qualities and provide statistical description of channel quality measurement in
any location and any time. More specifically, the power from primary users can
be estimated through secondary users resulting power density maps that allows
resource allocation in the frequency bands that are not crowded [12, 36, 48, 57].

For vehicle-to-vehicle (V2V) networks, large-scale characteristics of the wireless
channel (i.e., path-loss) may be captured using channel or position/motion mea-
surements [13]. It has been shown that the feedback of position information to
accomplish link adaptation is favorable compared to the overhead for the feedback
of path-loss information. Particularly, for the case that path-loss changes rapidly.
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9.3.6 Ultra Dense Networks

The throughput of a user in 5G networks is increased by the network densification.
Densification in 5G networks is achieved in the spatial and frequency domain
through the deployment of small cells and using additional spectrum (e.g., millime-
ter wave bands spanning from 30 to 300 GHz) [4]. Due to the use of small cells
or cell splitting for spatial densification, path-loss is reduced while both desired
and interfering signals are increased. Consequently, to translate densification into
enhanced user experience backhaul densification is required together with space and
frequency densification. Cloud radio access network (Cloud-RAN) architecture with
coordinated multipoint processing (CoMP) where transmit/receive processing is
centralized at a single processor transforms the systems into a near interference free
system. Massive MIMO and mm-wave communication serve as the other candidates
to improve capacity for wireless backhaul.

9.3.6.1 Mobility Management in Ultra Dense Networks

A moving node in a network or a group of such nodes form a moving network
that can communicate with the other fixed or mobile nodes. This enhances the
coverage for potentially large populations of jointly moving communication devices
[18]. Tracking and predicting the device locations in the radio network is beneficial
from various points of views. Location-aware communications may be considered
as one of the advantages of predicting the user locations in the wireless network. The
combination of radio environment maps and predicted user node locations are used
within the network for proactive radio resource management (RRM). This leads
to power consumption and load balancing at the moment and near future together
with proactively allocating orthogonal radio resources in time and frequency [22].
Predicted user locations can be used for different applications including location
data for self-driving cars, autonomous vehicles, and robots.

9.4 Mm-Wave Channels

In this section, we briefly describe mm-wave channels and the methods to estimate
the channel parameters including AOA/AOD and TOA using the sparsity of
the mm-wave channels. First, different path-loss models for mm-wave channels are
described. Second, a double directional channel model is presented. Third, some
estimation techniques are proposed. Finally, the sparsity of the mm-wave channel is
applied for parameter estimation.
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9.4.1 Path-Loss

First, a frequency dependent path-loss model is presented that is mainly used for
communication purposes. Then, we present a path-loss model based on geometry
statistics, which is more suitable for localization purposes.

9.4.1.1 Frequency Dependent Path-Loss

An important challenge in mm-wave frequencies is the high path-loss. The effect of
path-loss in mm-wave systems is much higher than in wideband and ultra-wideband
systems. This can be seen using the free space path-loss (FSPL) formula, defined as
the path-loss for two isotropic antennas at the distance d, and is given by

FSPL.d; f / D
�
	

4�d

�2
; (9.1)

with 	 D c=f is the wavelength corresponding to a given frequency f (e.g., of
the order of 60GHz for the mm-wave frequencies). Since the FSPL is proportional
to the squared frequency, the attenuation is much more severe than the UWB
systems. In practice, the path-loss is expressed in dB relative to a reference power
or transmitted power, and relative to the carrier frequency. Therefore, the path-loss
in 28 and 38GHz in urban microcells can be written as [33, 38, 60]

PL.d; f / D ˛ C 10 Ň log10.d/C 20� log10

�
f

fc

�
; (9.2)

in which f 2 Œ�B=2;B=2� and B denotes the bandwidth (e.g., on the order of 6GHz
for the mm-wave frequencies), ˛ is the path-loss at the carrier frequency fc and at
distance of 1 m, Ň is the average path-loss exponent, and 2� is the exponent of the
frequency dependency. As it is clear from (9.2), increasing the fractional bandwidth
FB D f=fc makes the effect of frequency dependent term more pronounced, see
[33, 38, 60] for the typical values of path-loss for different parameters in (9.2).

9.4.1.2 Geometry Based Statistical Path-Loss

This approach is based on a cluster based channel model for the mm-wave frequen-
cies. Each cluster is defined as the set of parameters including TOA, AOA/AOD,
and complex channel gains with close values. We call the parameters in each cluster
as intra-cluster parameters and the parameters from the different clusters as inter-
cluster parameters. When a path arrives to the receiver, it has already gone through
kr reflections and kd diffractions (object-intersections) [30, 31]. The probabilities
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of encountering kr reflections and kd diffractions at distance d are described by the
geometrical distribution of the environment and follow the Poisson distributions

pr.krjd/ D exp.�	rd/.	rd/kr

krŠ
;

and

pd.kdjd/ D exp.�	dd/.	dd/kd

kdŠ
;

where 1=	r and 1=	d are calibration parameters. They can be found similarly as
done in [24], that is, as the mean distance a ray can travel before it intersects with an
object that leads to reflection or diffraction. Using the above definitions, the shadow
fading of the n-th cluster can be calculated as

�2SF.dn/ D
X

kr

pr.krjdn/�
2
SF;r.kr/C

X

kd

pd.kdjdn/�
2
SF;d.kd/; (9.3)

where �2SF;r.kr/ and �2SF;d.kd/ are reflection and diffraction losses caused by kr and
kd scattering events, respectively, dn D c�n where c D 3 � 108 m=s is the speed of
light in free space and �n is the TOA of the first sub-path component within the n-th
cluster, and �0 D dlos=c where dlos is the LOS distance between the transmitter and
receiver. Consequently, the path-loss of the n-th cluster with traveling distance dn is

�n D �2SF.dn/�
2.dn/

�
	c

4�dn

�2
; (9.4)

where �2.dn/ is the atmospheric attenuation, and the last term denotes the free space
path-loss. We use the path-loss model in (9.4) for localization purposes instead
of (9.2) due to the geometrical relationships between the clusters, transmitter, and
receiver contained in the formula. Following the inter-cluster path-loss �n the intra-
cluster path-loss can be obtained, see [11, 20, 54] for more details and typical values
of the path-loss using geometry based statistical model.

Figure 9.4 shows the geometry based statistical model for two clusters with one
reflection for the first cluster and two reflections for the second cluster, and total
path lengths of d1 D d11 C d12 and d2 D d21 C d22 C d23, respectively.

9.4.2 Mm-Wave MIMO Channel Model

In a mm-wave MIMO system, channel parameters including AOA/AOD, channel
gains, and TOA (i.e., the parameters that describe multipath components (MPCs))
are used for the localization purposes. A common approach for modeling the mm-
wave MIMO channels is to group a set of rays with some close parameters in a
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d2,3

cluster 1
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Fig. 9.4 Geometry based statistical path-loss model for mm-wave MIMO channel with two
clusters and first and second order reflections

cluster. Consequently, the channel response between the receiver and the transmitter
can be written as the sum of K specular MPCs and the LOS as [2, 19, 44]

H.t; f / D
KX

kD0
�kBRx.f ; �Rx;k/XkBT

Tx.f ; �Tx;k/e
�j2� f �k ej2� t�k ; (9.5)

where �k was given in (9.4), BTx.f ; �Tx;k/ 2 CNTx�2 and BRx.f ; �Rx;k/ 2 CNRx�2
denote the complex beam pattern of the transmit array and the receive array with
horizontal and vertical polarization, respectively, Xk 2 C2�2 contains the four
polarimetric transmission coefficients for the k-th MPC, �k is the k-th TOA, and
�k denotes the Doppler frequency for the k-th MPC. For the case of conventional
(non-polarized) uniform linear arrays (ULAs), (9.5) turns into [19, 51, 59]

H.t; f / D
KX

kD0
�khkaRx.f ; �Rx;k/aT

Tx.f ; �Tx;k/e
�j2� f �k ej2� t�k ; (9.6)

where aRx.f ; �Rx;k/ 2 CNTx�1 and aTx.f ; �Tx;k/ 2 CNRx�1 denote the array steering
vectors for the ULAs, and hk is the complex channel gain for the k-th cluster. The
effect of polarization is not considered in the channel modeling. This is due to the
fact that polarization has no significant effect in NLOS, while in the LOS it can
double the spectral efficiency. In general, more research on the effect of polarization
in the mm-wave channels is required.
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9.4.3 Parameter Estimation

Some of the typical algorithms used in channel estimation in 5G are:

1. Space-alternating generalized expectation maximization (SAGE).
2. Joint and iterative maximum likelihood estimation in [45], named RIMAX.

In the parameter estimation of the MPC, it is usually assumed the impulse response
in (9.5) or (9.6) to consist of specular scattering.

9.4.3.1 SAGE

Particularly, SAGE algorithm (that is an algorithm based on expectation maxi-
mization and successively cancels interference) uses this assumption [15]. The
SAGE algorithm jointly estimates MPC parameters, i.e., AOA/AOD, channel gains,
Doppler shifts, and TOAs.

9.4.3.2 RIMAX

In addition to specular scattering, considering diffuse scattering improves the
parameter estimation. RIMAX is an estimation method that considers the diffuse
scattering in addition to specular scattering to improve the estimation of parameters.
Moreover, an extended Kalman filter can be used for tracking the parameters in a
sequential way for the case of time-varying channels.

The SAGE method can be considered as the preferred algorithm to estimate
the MPC parameters due to the fact that in the mm-wave frequencies most of the
power can be attributed to specular components. In the SAGE algorithm, the channel
response in (9.5) or (9.6) consists of the superposition of K C 1 plane waves where
K is the number of MPCs with specular scattering property, and the index 0 denotes
the LOS path, which is omitted for the obstructed-line-of-sight (OLOS) scenario.

9.4.4 Sparsity

The propagation environment has a different effect for the mm-wave channels due
to smaller wavelength. Due to the reduced fresnel zone diffraction is lower while
penetration losses can be much larger. Few and clustered paths lead to channel
sparsity unlike UWB channels [6, 35]. Consequently, the channel is “sparse” in
the angular and time domains. The sparsity of the mm-wave channels significantly
simplifies the estimation of channel parameters including TOA, Doppler spread,
and AOA/AOD, which are difficult to estimate based on the physical channel model
in (9.6) due to the non-linear dependence of f�Tx;k; �Rx;k; �k; �kg on H.t; f /. To this
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end, we use a virtual representation for the physical channel model in (9.6) for the
estimation of channel parameters by sampling in time, frequency, and space with
the aid of a 4D Fourier transform [3, 27, 50]. For indoor applications, we will
encounter a very slowly varying channel due to the fact that we are dealing with
small values for the velocity and considering high data rate radios operating at
60 GHz. Consequently, time variation or Doppler spread is not a serious problem
and can be neglected for indoor localization. Hence, we can eliminate the Doppler
spread in (9.6) and write the virtual representation as

H.f / D
L�1X

lD0
ARxHT

v .l/A
H
Txe�j2� l

B f ; (9.7)

where L D dB�maxe C 1 denotes the maximum number of resolvable delays and
�max is the delay spread, ARx and ATx are NRx � NRx and NTx � NTx unitary matrices
comprising aRx.m=NRx/ and aTx.m=NTx/ as their columns, and the k-th element
of aRx.m=NRx/ is equal to 1=

p
NRxexp.�j2�.k � 1/m=NRx/, and similarly for

aTx.m=NTx/. Besides, Hv.l/ D Œhv;1.l/; : : : ;hv;NRx.l/� is an NTx�NRx matrix with the
ith column hv;i.l/ consists of the matrix of virtual channel coefficients fHv.i;m; l/g
obtained as

Hv.i;m; l/ D
X

k2SRx;i\STx;m\S�;l

1

B

Z B
2

�B
2

Hb;i;m;k.f /e
j2� l

B f df ; (9.8)

where

Hb;i;m;k.f / D �khkDNRx.
e�Rx;k.f / � i
e�Rx/DNTx.

e�Tx;k.f / � m
e�Tx/e
�j2� f �k ;

(9.9)

in which DN.�/ D sin.�N�/=sin.��/ is the Dirichlet sinc function, e�Tx;k.f / D
.d=	/sin.�Tx;k/ with 	 D c=.f C fc/ ande�Rx;k.f / is defined similarly by replacing
the subscript Tx by Rx,
e�Tx D 1=NTx and
e�Rx D 1=NRx are the orthogonal beam
spacings for the transmit and receive ULAs, and SRx;i, STx;m, and S�;l are the subsets
for partitioning the K C 1 paths defined as

SRx;i D fk We�Rx;k.f / 2 .i=NRx �
e�Rx=2; i=NRx C
e�Rx=2�g; (9.10)

STx;m D fk We�Tx;k.f / 2 .m=NTx �
e�Tx=2;m=NTx C
e�Tx=2�g; (9.11)

S�;l D fk W �k 2 .l=B � 1=2B; l=B C 1=2B�g: (9.12)

Note that for sufficiently small fractional bandwidth (e.g., smaller than 0:02)
e�Rx;k.f / ande�Tx;k.f / are constant within the frequency band of interest and belong to
the above intervals. However, when the fractional bandwidth is larger, the resolution
in the estimation of AOA/AOD becomes worse as more intervals are required to
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Fig. 9.5 Normalized magnitude of the virtual representation fHv.i;m; l/g in AOA/AOD subspace

includee�Rx;k.f / ande�Tx;k.f / within the bandwidth of interest. The estimated values
of the AOA/AOD and TOA are obtained by finding the indices corresponding to the
non-zero entries of fHv.i;m; l/g as

fimax;mmax; lmaxg D argmax
i;m;l

fHv.i;m; l/g: (9.13)

Figures 9.5 and 9.6 show the normalized magnitude of the virtual representation
fHv.i;m; l/g of the mm-wave channel for four different clusters and the LOS in
the AOA/AOD and AOA/TOA planes. The values of the AOA/AOD and TOA
are dominant only in the direction of clusters and the LOS. Using the sparsity of
the mm-wave channels, a training based method can be used for the parameter
estimation. Training based methods consist in sensing and reconstruction. Sensing
corresponds to the design of training signals that are used by the transmitter to
probe the channel, while reconstruction is to recover the channel in the receiver. The
training based methods used in other rich scattering scenarios cannot be applied for
the mm-wave channels due to the large number of antennas and bandwidth, what
justifies the need to exploit the sparsity.



180 A. Shahmansoori et al.

1 2 3 4 5 6 7 8 9 10

−80

−60

−40

−20

0

20

40

60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
O

A
[D

eg
]

TOA[ns]

Fig. 9.6 Normalized magnitude of the virtual representation fHv.i;m; l/g in AOA/TOA subspace

9.5 Multi-Beam Transmission

To overcome the severe effect of path-loss frequencies7 in mm-wave, one can
increase the number of antenna elements to achieve beamforming gain. There exist
some challenges in using a large number of antennas (from a few tens to hundreds
of antennas) in the transmitter and receiver. One of the main challenges in using
large number of antenna elements is to design beamformers that can generate
narrow beams. In practice, analog beamformers using phase shifters suffer from
the quantization error and fail to point the beam with sufficient accuracy [23, 41].
Moreover, digital beamformers in their conventional form require digital-to-analog-
converter (DAC) for each antenna element in the transmitter and ADC for each
antenna element in the receiver. Considering the large number of antenna elements
in the transmitter and receiver, and the fact that DACs and ADCs consume a lot
of power at mm-wave, one needs to use a more efficient way for beamforming.
Moreover, multi-stream transmission using hybrid beamformers is required for both
communication and localization purposes [1, 39, 68]. Particularly, it is critical to
have more than one beam towards each user in order to make localization possible,
as it will be explained in more detail later on.

7For a given distance, the FSPL at 60GHz is 28 dB larger than 2:4GHz.
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In this section, first we review the hybrid beamformers as an important way for
multi-beam transmission to obtain AOA/AOD that are used for localization purposes
using the sparsity of the mm-wave MIMO channel in the beamspace. Second, a
beam training protocol to find the strongest link between transmitter and receiver
and consequently estimation of AOA/AOD as a key step for the localization is
investigated.

9.5.1 Hybrid Beamformers

Hybrid beamformers are used to avoid the complexity in the implementation of the
typical digital beamformers that require DAC for each antenna of the transmitter
and ADC for each antenna of the receiver, i.e., NTx DACs in the transmitter and NRx

ADCs in the receiver. Instead, hybrid beamformers use Mt < NTx and Mr < NRx

DACs and ADCs in the transmitter and receiver, respectively, where Mt and Mr

denote the number of transmit and received beams that are much smaller than
the number of antenna elements. Moreover, they provide multi-beam transmission
like digital beamformers but with less complexity. Especially, in the estimation
of AOD and AOA in LOS conditions one needs to send more than one beam at
each transmission as will be explained in the next section. Hybrid beamformers are
comprised of a baseband digital pre-coder, DACs, radio frequency (RF) chains, and
an RF analog pre-coder in the transmitter; and analog RF combiner, RF chains,
ADCs, and a baseband digital combiner in the receiver. More details about hybrid
beamformers in the lower frequencies can be found in [55, 65].

Figure 9.7 shows the MIMO architecture at mm-wave using a hybrid beamformer
in which Ns data streams are fed to the baseband digital pre-coder, Mt > Ns outputs
of the baseband pre-coder are converted to analog and used to generate Mt beams

.
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or Combining (Rx)

DAC
orADC

DAC
or ADC

RF
Chain

RF
Chain

RF

or Combining (Rx)
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Fig. 9.7 MIMO architecture at mm-wave based on hybrid analog-digital precoding and combining
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through RF chains that are connected to the antenna arrays by the RF analog pre-
coder. On the receiver side, the received signals are fed to the RF analog combiner
to capture the Mr beams, then the resulting signals are converted to digital and fed
to the baseband digital combiner to reconstruct the Ns transmitted data streams.

Hybrid analog pre-coder/combiner can be implemented in two different ways
using phase shifters and switches [21, 34, 40]. Although the lack of precision of
analog shifter can be compensated in the digital pre-coder/combiner, using switches
instead of analog phase shifters exploits the sparse nature of the mm-wave channel
by implementing a compressed spatial sampling on the received signal and further
reduces the complexity of the hybrid architecture using phase shifters.

9.5.2 Beam Training Protocols

The beam training protocol is a very important step in the AOA/AOD estimation
and will be briefly explained in this section. The beam training protocol included in
IEEE 802.11ad includes three major steps [26]:

• Sector Level Sweep (SLS): This stage is based on a coarse combination between
the sector (at the transmitter side) and antenna (at the receiver side). The
transmitter sends signals for each of its sectors, with a number of sectors up
to 64 per antenna. After completing the sweep by the transmitter, the MS selects
the best sector and sends feedback to the transmitter. At the end of this stage a
coarse estimation of the AOD is obtained.

• Beam Refinement Protocol (BRP): In this stage, the coarse estimation of the
AOD will be refined by sending the orthogonal beams within the optimal sector
found from the previous stage. The receiver sends feedback to the transmitter
regarding the success of the new beam. At the end of this stage a refined
estimation of the AOD is obtained.

• Beam tracking: This stage includes a periodic refinement over a small number of
antenna configurations.

Beam training protocols can be generalized for hybrid precoding rather than only
for analog beamformers. The main advantage is the capability to steer the beam
with more accuracy than using only phase shifters, thanks to the compensation of
the error in analog part using the digital pre-coder. This approach starts with the
coarse search for the best AOA/AOD and channel gains (SLS step) and refines
the estimated values (BRP step) in the final stages using a novel multi-resolution
beamforming codebook.

Figure 9.8 illustrates the beam training protocol as an important strategy to find
the best link between the BS and the mobile station (MS). Particularly, when one
link is not strong enough or is blocked and cannot be used to estimate the channel
parameters (i.e., AOA/AOD, delay, and channel gain), using first the beam training
protocol, we can obtain the sector that provides the LOS conditions, and then we use
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Fig. 9.8 Finding the optimal sector and beam for the localization of the MS by the SLS and BRP

the LOS link8 to localize the MS using the AOA/AOD and delay estimates, as will
be discussed below. In what follows, we provide an overview on the localization of
the MS using AOA/AOD, and TOA in a mm-wave MIMO system.

9.6 Localization Based on Delay, AOA, and AOD

In this section, we describe some localization techniques that can be used for 5G
systems. First we briefly describe common localization approaches using range
measurements, range-difference measurements, triangulation, and fingerprinting.
Then, the localization techniques based on the combination of range and angle infor-
mation are described for 5G systems. We consider 2D localization in this section for
simplicity.9 Nevertheless, the methods can be easily extended to 3D localization.

9.6.1 General Localization Techniques

9.6.1.1 Localization Using Range Measurements

Localization using range measurements is a technique for localization based on the
received signal strength (RSS) or the TOA from the BSs to the MS [42]. If the BSs

8Although, it is possible to use the information from the NLOS link for localization as will be
discussed in the next section.
9The reader is referred to [17, 52] for more details.
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Fig. 9.9 Range measurement
approach for the 2D
localization of the MS with at
least 3 BSs
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q3

d1
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d3

p

are located at the positions qi D Œqi;x; qi;y�
T, and the MS is located at the unknown

position of p D Œpx; py�
T with the distance di D c�i from the BS, we obtain the

following geometrical relation:

.qi;x � px/
2 C .qi;y � py/

2 D d2i : (9.14)

Putting together expressions like (9.14) corresponding to M anchors, we obtain a
systems of equation that can be solved for the position of the MS, p. Figure 9.9
depicts the range measurement approach using at least 3 BSs for 2D localization.

9.6.1.2 Localization Using Range-Difference Measurements

Range-difference measurement is a localization technique based on time difference
of arrival (TDOA) of the signals transmitted by the different BSs [67]. The
time/distance difference between BSs i ¤ j can be computed as

di � dj D 
di;j; (9.15)

with di obtained from (9.14). The above equation is the mathematical representation
of a hyperbola. For different pairs of BSs, (9.15) forms a system of equations whose
solution is the location of the MS, p. An example for TDOA technique are long-term
evolution (LTE) networks. Unlike TOA based localization, in the localization using
TDOA there is no need for synchronization between transmitters and receivers.
Figure 9.10 shows 2D localization based on TDOA with at least 3 BSs.
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Fig. 9.10 Range-difference
measurement approach for
the 2-D localization of the
MS with at least 3 BSs
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Fig. 9.11 Triangulation
approach for the 2-D
localization of the MS
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9.6.1.3 Triangulation

Triangulation is a localization technique based on angle measurements [32]. This
technique usually requires the use of antenna arrays in the transmitter and receiver
to measure the AOA and AOD. Estimation algorithms such as multiple signal
classification (MUSIC) and estimation of signal parameters by rotational invariance
techniques (ESPRIT) can be applied to estimate the AOA and AOD [25, 37].
Localization of the MS is possible if the AODs from two BSs are known (in
the downlink) or the AOAs at the two BSs are known (in the uplink). But, if
the MS only knows the AOA from two BS transmissions and the rotation of the
MS is unknown, then positioning is not possible, and more AOA measurements
are needed. Moreover, this method fails for the localization of the MS if the MS
is aligned with the BSs as no triangle can be formed in this case. Figure 9.11
demonstrates the triangulation approach for the 2D localization of the MS with
two BSs.
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9.6.1.4 Fingerprinting

Fingerprinting approach is based on the fact that radio waves emitted from the BSs
leave a unique radio fingerprint at a given location that can be used for localization
[7]. This requires a training phase to collect the fingerprints at known locations
that later on can be used for the localization of the MS based on probabilistic
or deterministic positioning techniques, e.g., maximum likelihood estimator or
k-nearest-neighbor (kNN).

9.6.2 Mm-Wave Localization Techniques

From the above discussion, we interpret that all the aforementioned methods either
use the information from angles, delays, or RSS. However, one may envision that
both angles and delays can be used for the localization at the same time. Particularly,
large number of antenna elements in the transmitter and receiver in the 5G systems
provides steerable narrow beams that can be used for localization with AOA/AOD
and TOA.

Figure 9.12 shows the LOS link for the localization of the MS using joint angle
and delay measurements. The TOA provides a circle with the radius of d0 from
the MS centered in q, AOD and AOA provide lines that eventually lead to the
localization of the MS as shown in Fig. 9.13. This can be simply expressed as

θTx,0 π − θRx,0

d0

BS

MS
q

p

x

y

α

Fig. 9.12 LOS link for the localization based on joint AOA/AOD and TOA estimation
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Fig. 9.13 Demonstration of
the localization in the LOS
with TOA and AOA/AOD

θTx,0

d0

q

p

x

y

α

.qx � px/
2 C .qy � py/

2 D d20; (9.16)

and

tan.�Tx;0/ D py � qy

px � qx
: (9.17)

Solving (9.16) and (9.17) leads to

p D q C d0u.�Tx;0/;

where u.�Tx;0/ D Œcos.�Tx;0/; sin.�Tx;0/�
T. Moreover, the orientation is obtained as

˛ D � C �Tx;0 � �Rx;0. Figure 9.14 shows the LOS link in the presence of clusters.
In this case, the presence of clusters reduces the localization accuracy depending on
the location of the clusters towards the LOS link as will be shown in the simulation
results. Moreover, the orientation is only estimated through the LOS link and the
clusters do not provide any information on the orientation of the MS.

Figure 9.15 demonstrates the use of NLOS links10 for the localization of the MS
using joint angle and delay measurements and a given orientation ˛0. In this case
the location of the MS can be obtained using the following equations:

kp � s1k C kq � s1k D d1; (9.18)

kp � s2k C kq � s2k D d2; (9.19)

s1 D q C d1;1u.�Tx;1/; (9.20)

s2 D q C d2;1u.�Tx;2/; (9.21)

10This can also be considered as the blocked LOS as in the mm-wave frequencies blockage happens
quite often especially for indoor localization.
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Fig. 9.14 LOS in the presence of clusters for the localization based on joint AOA/AOD and TOA
estimation

tan.� � .�Rx;1 C ˛0// D s1;y � py

px � s1;x
; (9.22)

tan.� � .�Rx;2 C ˛0// D �s2;y C py

px � s2;x
; (9.23)

where q is known, f�Tx;k; �Rx;k; dkg denotes the set of estimated parameters that are
assumed to be known, p is the unknown location of the MS, and fsk; dk;1g denotes
the set of unknown parameters including the location of the k-th cluster sk and the
distance between the k-th cluster and the BS dk;1. Considering 2-D localization,
there are 8 unknown parameters that can be obtained by the above set of equations.
The TOA from two clusters provides the intersection from two circles as shown in
Fig. 9.16, while the AOAs provide the lines for the localization of the MS.

9.7 Simulation Results

In this section, we analyze the performance of the mm-wave localization techniques
by means of numerical simulations. Performance is measured in terms of the
position error bound (PEB, expressed in meters) and the rotation error bound
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Fig. 9.15 NLOS link for the localization based on joint AOA/AOD and TOA estimation

(REB, expressed in radians), where PEB ,
s

tr

�h
J�1

�

i

1W2;1W2

�
and REB ,

s

tr

�h
J�1

�

i

3;3

�
with J� being the Fisher information matrix (FIM) of the unknown

parameter � , ŒpT; ˛;�T�T. For the case of LOS, the parameter � that is related
to the clusters (i.e., for the l-th cluster �l D Œ�l;�

T
l ;h

T
l �

T where � l D Œ�Tx;l; �Rx;l�

and hl D ŒRefhlg; Imfhlg�T) is set to zero. For the case of NLOS, we assume that
˛ D ˛0 and consequently it disappears from the unknown parameter �. We compute
the PEB for different locations of the MS for the BS located at a fixed position. The
comparison between PEB for the case of LOS and in the presence of the clusters is
provided. Finally, the performance of the NLOS link with two clusters is shown for
a given orientation for different locations of the MS and the BS located at a fixed
position.

9.7.1 Simulation Setup

We set fc D 60GHz, B D 600MHz, and N0 D 2W=GHz. The inter-element spacing
is assumed to be d D 	c=2. The number of transmit and receive antennas for the
non-polarized ULAs are set to NTx D 64 and NRx D 8.
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Fig. 9.16 Demonstration of the localization in the NLOS with TOA and AOA/AOD

9.7.2 Results and Discussion

Figures 9.17 and 9.18 show the AOD, AOA, and TOA in the LOS and the resulting
values of the PEB and REB for different locations of the MS. It is observed that
in the directions of the beams, the AOA/AOD and TOA together with the PEB and
REB have the lowest values, while in the other locations the values are much higher.
More specifically, for a distance of kq � pk D 0:5m, the PEB in the directions of
the beams is approximately 5 cm while the highest PEB is approximately 3m. The
REB values range from 0.01 rad in the direction �=3, over 0.02 rad in the direction
��=3, up to 0.2 rad outside any of the beams. We observe the impact of the extra
beam in the direction of �=3 that provides increased SNR, leading to better TOA
information (in the Fisher sense) and good information regarding AOA/AOD that
leads to reducing the PEB and REB. On the other hand, the single beam that is
transmitted in the direction of ��=3 provides good TOA and AOA information but
leads to poor AOD information (except for MS locations close to the BS). Hence,
the PEB and REB in the direction of ��=3 are higher.
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Fig. 9.17 Performances of the AOD, AOA, and TOA in the LOS for different locations of the
MS and the BS located at q Œm� D Œ0; 0�T, for a scenario with three beams in the directions
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In the presence of LOS, the effect of NLOS paths on position estimation is shown
in Fig. 9.19. It can be observed that adding the clusters sequentially reduces the
position information (in the Fisher sense) that leads to higher values of the PEB.
Moreover, sufficiently good localization accuracy can be obtained even at low SNR.

Figure 9.20 compares the PEB for the LOS in presence of clusters and NLOS
conditions. It can be observed that the PEB for the NLOS is much higher than the
LOS condition (around 35 dB at snr � 1 dB). Moreover, adding the clusters make
the performance worse due to reducing the position information in the Fisher sense.

9.8 Conclusions

Among 5G candidate technologies, mm-wave provides promising solutions for
localization, thanks to the large bandwidth and highly directional links made
possible by the small wavelength at mm-wave frequencies. The effect of path-loss
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in mm-wave frequencies can be compensated by using the antenna arrays in the
transmitter and receiver. Hybrid beamformers and beam training protocols provide
powerful tools for AOA/AOD estimation that can be used for localization of the
MS. Specifically, the NLOS links provide valuable information for the localization
of the MS as beam tracking protocols lead to finding the strongest NLOS link and
estimation of the AOA/AOD and TOA. The localization of the MS is based on
the geometry of the environment and a geometrical statistical path-loss model. In
general, the sparsity of the mm-wave wave channel is the key for estimation of
the channel parameters especially in the NLOS conditions. Finally, the accuracy in
terms of PEB was proposed by exploiting the delay and angle information for LOS
and NLOS conditions in the simulation results.
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