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1.1 Introduction

Synchronization is a critical aspect of virtually all communications systems. Ac-

curate frame and symbol synchronization is especially important in time-division

multiple access (TDMA) and packet-based systems, or with any protocol that em-

ploys training, control, or identi�cation bits interspersed with the raw data. Mul-

tiuser detectors for code-division multiple access (CDMA) require reliable code tim-

ing information for acceptable performance in near-far environments. In addition,

achieving precise synchronization is the key to obtaining location estimates with

accuracies of a few meters or better in Global Positioning System (GPS) receivers.

Timing information is also needed for any application where range measure-
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ments are made, as in active radar and sonar systems. In these �elds the problem

is usually referred to as time-delay estimation, but in mathematical terms there

is little di�erence between this and synchronization. We will use both terms in-

terchangeably. There is a vast literature on both synchronization and time delay

estimation, the majority of which focuses on the case where data is measured from

a single receiver. However, the performance of single channel timing recovery meth-

ods is limited when multipath or co-channel interference (CCI) is present, such as in

surveillance systems plagued by jamming and many wireless communications appli-

cations. For this reason, attention has recently shifted to the use of antenna arrays

for addressing these problems. The spatial selectivity o�ered by an antenna array

can dramatically improve performance in environments with severe interference.

A number of techniques that exploit antenna arrays for synchronization have

been developed, each di�ering from the others on its assumptions regarding multi-

path, CCI, signal parameterization, and computational load. One of the �rst such

techniques was presented in [1] for DS-CDMA systems, in which a least-squares

beamformer is calculated for each possible location of the desired user's codeword

over one symbol period, assuming no transition has occurred between consecu-

tive symbols. A similar approach was presented in [2] for TDMA communication

systems, using a minimum mean-squared error (MMSE) beamformer calculated

for each possible position of a training sequence in a given frame of data. The

beamformer that results in an output that is the most strongly correlated with

the training sequence is used to cancel CCI and any uncorrelated multipath. The

guard intervals present in such systems are also included in order to remove CCI

not present during the training interval. More recently, this approach has been

revised and extended to better deal with CCI [3], and to handle very short bursts

of training data [4].

Other researchers have taken a parameter estimation point of view, attempting

to determine the direction of arrival (DOA) and time delay of each arrival of a

given signal at the array. While these techniques do not take CCI into account,

they exploit the full space-time structure of the multipath. The methods of [5],

[6] do not operate directly on the data; instead, they assume that the channel

matrix has been estimated in a previous step. The DOAs and time delays are then

determined by �tting the model to the estimated channel. While suboptimal, the

advantage of this approach is that in certain cases, the channel estimate may be

obtained blindly, without the need for training data. The algorithm of [6] requires

either a multidimensional (MD) search, or a series of suboptimal one-dimensional

(1-D) searches, while that of [5] assumes a uniform linear array (ULA) and achieves

closed-form estimates using a 2-D version of the ESPRIT technique [7]. This latter

idea is carried one step further in [8], where a uniform rectangular array is used

to estimate both azimuth and elevation DOAs along with the time delays using a

3-D ESPRIT implementation. It should be noted that [8] works directly on the

received data to estimate the parameters in a single step. A maximum likelihood

(ML) approach is taken in [9], [10], [11], in which both the interference and noise

are modeled together as a temporally white Gaussian process. The methods of [10],

2



[11] also assume spatial whiteness. In [12], the joint angle and delay estimation

problem is solved via weighted least squares (WLS), where the weighting matrices

are designed to account for spatial color, array calibration errors, etc. While o�ering

some claim to optimality, the primary drawback of the ML and WLS approaches is

that complicated search procedures are required to estimate the desired parameters.

To obtain DOA estimates of each arrival, the parametric approaches described

above must assume the availability of a calibrated antenna array, and a single ar-

rival at each time delay. Errors in the array calibration or deviations of the array

from uniformity are inevitable, and can lead to signi�cant performance degradation.

Furthermore, in multipath-rich propagation environments, there may be numerous

arrivals at each delay due to local scattering near the array. To overcome these

diÆculties, an unstructured parameterization of the spatial response can be used,

as in [13]. While this leads to an increase in the number of parameters to be esti-

mated, the model is linear in the additional parameters, and they can be estimated

in closed form. Once the spatial parameters are eliminated from the ML criterion

in [13], the time delays are solved for iteratively using either IQML [14] or MODE

[15], [16]. A suboptimal delay estimator based on ESPRIT is also presented in [13].

These techniques have recently been extended in [17] to the blind case where no

training data is available, although without exploiting additional knowledge about

the signal (e.g., known pulse shaping, etc), an absolute time base cannot be estab-

lished in this case. Note that [13], [17] both assume spatially and temporally white

noise, and thus are not suited for situations involving strong CCI. If the desired

signal is digitally modulated with a known pulse shape, the iterative method of

[18] can be used to account for spatially colored interference via prewhitening. The

algorithm presented in [19] also allows for interference with arbitrary unknown spa-

tial color as well as an unstructured array response for the desired signal, although

it assumes a slightly di�erent temporal model. Instead of modeling the multipath

arrivals using arbitrary delays, the arrivals are assumed to occur on a uniformly

spaced time-domain grid with an unknown starting location. While not exact, this

model leads to an ML solution requiring only a 1-D search for the starting position

of the training sequence.

Other work has focused on the special nature of the synchronization problem in

various applications. The use of antenna arrays in code timing recovery for CDMA

applications has been addressed in [1] as mentioned above, and more recently in

[20], [21], [22], [23], [24]. Each of these approaches estimates the code timing for one

user at a time while treating the multiple access CCI as Gaussian interference with

unknown spatial color. In [20], [21] the interference is restricted to be temporally

white, while the other methods allow for CCI with unknown temporal color. The

methods described in [20], [22], [24] assume 
at fading and an unstructured spatial

response model for the desired user, and use a maximum likelihood approach that

leads to a simple 1-D search for the location of the user's codeword. They di�er

in that [24] assumes a known set of training symbols, while the algorithm in [22] is

blind. The algorithm in [20] is general enough for either case, but it operates using

only one symbol's worth of data, and the time delay is restricted to be an integer
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multiple of the chip period. The approach described in [21] also assumes 
at fading

and an unstructured array response, but it resorts to an unnecessary asymptotic

approximation of the ML criterion to achieve a 1-D parameter search. However,

[21] does present a method for transforming the 1-D search for the time delay into

rooting a second order polynomial. As an alternative to the above approaches, [23]

assumes a uniform linear array and processes the data in the frequency domain to

estimate the DOAs and time delays of all of the desired user's multipath arrivals

via 2-D ESPRIT.

Exploiting antenna arrays for synchronization in GPS systems is another appli-

cation that has recently been considered in [25], [26]. Di�erentiating aspects of this

application are that only the time delay of the direct path is of interest, and one

can usually assume that the DOA of the direct path is precisely known. Finally,

we also mention the work of [27], [28], which focus on exploiting antenna arrays not

only for estimation of multipath time delays, but also carrier o�sets and Doppler

shifts as well.

The goal of this chapter is to present a general mathematical framework for the

problem of using antenna arrays for synchronization and time delay estimation, in

order to better contrast and compare the techniques described above. We will also

present a few speci�c algorithms that we believe o�er the best compromise between

model realism and computational complexity.

1.2 Data Model

We assume that an arbitrarym element array receives d scaled and delayed replicas

of a known signal s(t). The baseband array output is modeled as the m�1 complex

vector

y[n] =

dX
k=1

aks(nTs � �k) + e[n] ; (1.2.1)

where Ts is the sampling period, ak 2 CI
m and �k are the spatial signature and time

delay of the kth arrival, and e[n] 2 CI
m represents additive noise and interference.

We may write (1.2.1) in matrix form as follows:

y [n] = As [n; � ] + e [n] (1.2.2)

where

� = [�1 � � � �d]
T

d� 1 (1.2.3)

A = [a1 � � � ad] m� d (1.2.4)

s[n; � ] =
�
s (nTs � �1) s (nTs � �2) � � � s (nTs � �d)

�T
d� 1 (1.2.5)

If N samples are collected from the array, they all may be grouped together into

the following m�N matrix equation:

Y = [y[1] y[2] � � � y[N ]] = AS (� ) +E (1.2.6)
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where S (� ) 2 CI
d�N and E 2 CI

m�N are formed identically to Y.

It is clear from the above model that we are invoking the standard \narrowband

assumption" common to many array signal processing problems; i.e., we assume

that the time required for the signal to propagate across the array is much smaller

than its inverse bandwidth. Note that, rather than parameterizing the array re-

sponse ak in terms of one or more DOAs, we treat it as an unstructured determin-

istic vector. Note also that we assume that the received signal can be described by

discrete arrivals with distinct delays. This is obviously an approximation, especially

in the multipath rich environments often encountered in wireless communications.

In situations where temporally and spatially di�use arrivals are present, the above

model is still quite reasonable since arrivals that have nearly the same delay � (i.e.,

arrivals whose delays are separated by less than the reciprocal of the signal band-

width, due for example to a cluster of closely spaced scatterers) can be grouped

together into a single term. The temporal spread in a given cluster and the total

number of clusters d will then depend on the bandwidth of the transmitted signal;

the wider the signal bandwidth, the more clusters that may be necessary. The sin-

gular values of the data matrix formed from several snapshots of data can be used

to determine d for a given scenario.

This approach is advantageous from a modeling and estimation point of view,

as it leads to algorithms with a more reasonable computational cost. In a fully

parameterized model, the spatial signature would be decomposed as

ak =

dkX
i=1

�i;ka(�i;k) ; (1.2.7)

where a(�) represents the far-�eld array response to a unit amplitude plane wave

arriving from DOA �, and dk; �i;k and �i;k denote the total number of multipaths

associated with arrival k, their complex amplitudes, and their DOAs, respectively.

While perhaps more concise than assuming an unstructured ak (unless dk is large),

such a model requires in general a more complicated estimator due its non-linear de-

pendence on the DOA parameters. In addition, estimation of the DOAs necessitates

that the array response a(�) be accurately calibrated, which is a problematic as-

sumption. For these reasons, we feel that the use of an unstructured spatial response

model leads to a much more practical approach. If DOA information is needed (e.g.,

in forming transmit beamformer weights for downlink communication in frequency

division duplex communications systems), the directions can be determined from

the estimated spatial signatures using a simple least-squares �t, provided that dk is

not too large. See [13], [29] for more information on this approach.

Errors in the above model, together with the e�ects of background noise and

co-channel interference, are all lumped together in the error term e[n]. The CCI

contribution to e[n] could be modeled in the same way as the signal of interest,

e.g., as several delayed versions of, say, a �nite alphabet sequence. However, taking

the CCI structure into account in this way will lead to a search over all �nite al-

phabet sequences transmitted by the interferers. Instead of such a computationally
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demanding strategy, we model the CCI contribution, along with additive noise and

model errors, as complex Gaussian. This assumption is primarily for modeling pur-

poses, and allows us to develop a metric that takes the spatial covariance of the CCI

into account. Thus, e[n] is modeled as a complex, circularly-symmetric, zero-mean

Gaussian process. For simplicity the process is assumed to be temporally white.

However, as in, e.g., [9], [19], [20], [21], [30], the CCI is accounted for by modeling

the process as spatially colored with an arbitrary unknown correlation matrix:

E fe[n]e�[m]g = Q Æn;m ; (1.2.8)

where (�)� denotes the complex conjugate transpose operation. While such a model

for e[n] is clearly only approximate, it captures the most signi�cant e�ects of the

noise and interference, and leads to tractable algorithms.

With the above mathematical model in hand, we can succinctly state the prob-

lem addressed in this work:

(P1) { Given N snapshots of data in the matrix Y described by

equations (1.2.1)-(1.2.6), estimate the spatial signatures A and time

delays � of the arrivals, as well as the spatial covariance Q of the noise

and interference.

We will also consider a slight variation of the above problem that results when a

small but signi�cant modi�cation to the signal model is used. As an alternative

to (1.2.5), consider the following de�nition for s[n; � ]:

s[n; � ] =
�
s (nTs � �) s ((n� 1)Ts � �) � � � s ((n� d+ 1)Ts � �)

�T
:

(1.2.9)

In this approach, the e�ect of the multipath channel is modeled as a �nite impulse

response (FIR) �lter, with the kth row of A containing the �lter coeÆcients for the

channel separating the source and the kth antenna. The signal vector is assumed to

be known to within the scalar time delay parameter � , which we will refer to as the

frame delay to di�erentiate it from the propagation delays in the model of (1.2.5).

For the model of (1.2.9), we word the problem statement as follows:

(P2) { Given N snapshots of data in the matrix Y described by

equations (1.2.1)-(1.2.4), (1.2.6), and (1.2.9), estimate the FIR channel

matrixA and frame delay � of the signal, as well as the spatial covariance

Q of the noise and interference.

The mathematical approach we take to solve (P1) and (P2) is identical, although

the complexity of the resulting algorithms will be somewhat di�erent.

Although in the FIR case the e�ects of temporal oversampling or a pulse shaping

�lter (for digitally modulated signals) could be factored into the channel matrix A,

we will assume that the elements of s[n; � ] are samples of the continuous modulated

waveform s(t) rather than discrete symbols (this applies to the model in (1.2.5) as

well). As such, the matrix A only describes the propagation e�ects of the channel,
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and � is a continuous-valued variable. This assumption is somewhat di�erent than

that made in [19] and in other work on blind equalization of FIR channels (e.g.,

[31], [32], [33], [34], [35]). For both (1.2.5) and (1.2.9), we need an additional

technical assumption that will be used later on, namely that s (t) is a band-limited

�nite-average-power signal. Therefore, its analog autocorrelation function

css (�) = lim
T!1

1

T

Z
T

s (t+ �) s� (t) dt (1.2.10)

is assumed to be continuous with continuous derivatives. Assuming also that the

sampling period Ts satis�es the Nyquist criterion, then

lim
N!1

1

N

X
N

s (nTs � �l) s
� (nTs � �k) = css (�k � �l) (1.2.11)

As a �nal modeling issue, note that in the above discussion we have implicitly

assumed that d, the number of multipath rays (clusters) or the length of the FIR

channels, is known. Determining d is a non-trivial problem that is beyond the scope

of this chapter. A number of possibilities exist, including simple rank tests on Y,

use of the Minimum Description Length (MDL) [36] or Akaike's criterion (AIC) [37],

sequential tests based on the asymptotic distribution of a given criterion function

[38], [39], [40], robust bootstrap techniques [41], among many others.

1.3 Maximum Likelihood Estimator

Let p(�jQ) denote the probability density function (pdf) of a complex Gaussian vec-

tor with zero mean and covarianceQ. Under the assumption that e[n] is temporally

white, the negative log-likelihood function for N observations of y[n] is given by

fN(� ;A;Q) = �

NX
n=1

log p (y[n]�As[n; � ] jQ ) : (1.3.1)

The subscript N is used to explicitly denote the number of data samples used to

form the criterion. Note that this equation and all others derived in this section

apply to both problems (P1) and (P2) described above; the only di�erence is that

for (P2), � is a scalar variable representing the frame delay. Making use of the

expression for the complex Gaussian pdf [42] and neglecting irrelevant additive and

multiplicative constants, we obtain

fN (� ;A;Q) = log jQj+ trace
�
C(� ;A)Q�1

	
; (1.3.2)

where

C(� ;A) = R̂yy �AR̂�ys(� )� R̂ys(� )A
� +AR̂ss(� )A

� (1.3.3)

R̂yy =
1

N
YY� (1.3.4)
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R̂ys(� ) =
1

N
YS�(� ) (1.3.5)

R̂ss(� ) =
1

N
S(� )S�(� ) : (1.3.6)

The minimization of (1.3.2) with respect to Q and A may be performed ex-

plicitly. Using standard matrix calculus results (see e.g., [43]), the gradient of the

criterion with respect to Q is easily shown to be

@fN(� ;A;Q)

@Q
= Q�1 �Q�1C(� ;A)Q�1 ;

from which it is clear that the ML estimate of Q is given by3

Q̂ML(� ;A) = C(� ;A) : (1.3.7)

ReplacingQ in (1.3.2) with (1.3.7) and neglecting the resulting constant term yields

fN (� ;A) = log
���R̂yy �AR̂

�

ys(� )� R̂ys(� )A
� +AR̂ss(� )A

�

��� (1.3.8)

= log
���R̂yy � R̂ys(� )R̂

�1
ss (� )R̂

�

ys(� )

+
�
A� R̂ys(� )R̂

�1
ss (� )

�
R̂ss

�
A� R̂ys(� )R̂

�1
ss (� )

����� (1.3.9)
� log

���R̂yy � R̂ys(� )R̂
�1
ss (� )R̂

�

ys(� )
��� ; (1.3.10)

where in the second equation we have added and subtracted the term

R̂ys(� )R̂
�1
ss (� )R̂

�

ys(� ) :

For every � , the lower bound of (1.3.10) is clearly achieved if A = R̂ys(� )R̂
�1
ss (� ),

so the ML estimates of A and Q may be expressed as

ÂML(� ) = R̂ys(� )R̂
�1
ss (� ) (1.3.11)

Q̂ML(� ) = R̂yy � R̂ys(� )R̂
�1
ss (� )R̂

�

ys(� ) : (1.3.12)

The resulting criterion for � is then

fN (� ) = log
���R̂yy � R̂ys(� )R̂

�1
ss (� )R̂

�

ys(� )
��� = log

���Q̂ML(� )
��� : (1.3.13)

Thus, the maximum likelihood estimate of the spatial signatures (FIR channels),

ÂML(� ), is given by a least squares �t to the data, and the ML estimate of the

spatial noise covariance, Q̂ML(� ), is simply the sample covariance of the residuals.

The delay(s) for which the determinant of the sample covariance of the residuals is

3We assume that N � m + d so that the matrix C(� ;A) is invertible with probability one.
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minimized correspond to the propagation delays in the case of (P1), and the frame

delay for (P2).

Using the following standard properties of the matrix determinant:

jXZj = jXj � jZj

jI�XZj = jI� ZXj ;

where X and Z are appropriately dimensioned matrices, it is straightforward to

show that

fN (� ) = log
���R̂yy

���+ log
���I� R̂�1yy R̂ys(� )R̂

�1
ss (� )R̂

�

ys(� )
��� (1.3.14)

= log
���R̂yy

���+ log
���I� R̂� 1

2

yy R̂ys(� )R̂
�1
ss (� )R̂

�

ys(� )R̂
�

1

2

yy

��� (1.3.15)

def
= log

���R̂yy

���+ log jI�BN (� )j ; (1.3.16)

where we have de�ned BN (� ) in an obvious way. Note that the �rst term involving

the determinant of R̂yy can be ignored when minimizing with respect to � since it is

parameter independent. We will de�ne VN (� ) as the criterion obtained by ignoring

the �rst term:

VN (� ) = log jI�BN (� )j :

Consequently, the proposed maximum likelihood synchronization approach can be

summarized as in Table 1.1. Some properties of the algorithm are discussed below.

�̂ML = argmin
�

VN (� ) (1.3.17)

= argmin
�

log jI�BN(� )j (1.3.18)

BN (� ) = R̂
�

1

2

yy R̂ys(� )R̂
�1
ss (� )R̂

�

ys(� )R̂
�

1

2

yy (1.3.19)

ÂML(� ) = R̂ys(�̂ML)R̂
�1
ss (�̂ML) (1.3.20)

Q̂ML(� ) = R̂yy � R̂ys(�̂ML)R̂
�1
ss (�̂ML)R̂

�

ys(�̂ML) (1.3.21)

Table 1.1. Summary of the Maximum Likelihood Synchronization Algorithm for

Spatially Colored Noise and Interference

1.3.1 Consistency

The consistency of the ML time delay estimator follows from the fact that as N !

1, VN (� ) converges with probability one to its limiting value V1(� ), which is

minimized by the true values of the time delays, denoted by the vector � 0. The
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convergence is uniform thanks to the di�erentiability of css (�). By (1.2.11), the

limiting value of the cost function is

V1(� ) = log
���I�R� 1

2

yy ACss (� 0; � )C
�1
ss (� ; � )C�ss (� 0; � )A

�R
�

1

2

yy

���
= log

���I�R� 1

2

yy ACss (� 0; � 0)A
�R

�
1

2

yy

+ R
�

1

2

yy A
�
Css (� 0; � 0)�Css (� 0; � )C

�1
ss (� ; � )C�ss (� 0; � )

�
A�R

�
1

2

yy

��� (1.3.22)

whereRyy is the limiting value of R̂yy and the k,l-th element of the matrixCss (� ;�)

is css (�l � �k). At this point we have to use the following results. First, the

determinant is a nondecreasing function. This means that for any positive de�nite

matrix G and any non-negative de�nite matrix �G, the determinant satis�es

jG+�Gj =
��G(I+G�1�G)

��
= jGj

��I+G�1�G
��

� jGj ;

since the eigenvalues of I+G�1�G are � 1. Note that the equality only holds for

�G = 0. Second, the matrix

M (� 0; � ) = Css (� 0; � 0)�Css (� 0; � )C
�1
ss (� ; � )C�ss (� 0; � )

is non-negative de�nite because it is the Schur complement of Css (� ; � ) in�
Css (� ; � ) C�ss (� 0; � )

Css (� 0; � ) Css (� 0; � 0)

�
= lim

N!1

1

N

X
N

�
s [n; � ]

s [n; � 0]

� �
s� [n; � ] s� [n; � 0]

�
;

(1.3.23)

which is clearly non-negative de�nite. Therefore, the limiting cost function satis�es

V1(� ) � log
���I�R� 1

2

yy ACss (� 0; � 0)A
�R

�
1

2

yy

��� = V1(� 0) (1.3.24)

The equality in (1.3.24) holds if and only if the Schur complement M (� 0; � ) is

zero. This is only possible for � = � 0 if the following non-ambiguity condition is

ful�lled: The matrix Css (e� ; e� ) is positive de�nite for any vector e� of length 2d

whose elements are all distinct. This condition is equivalent to the one presented

in [44] for the estimation of directions of arrival with large arrays. The consistency

of ÂML and Q̂ML follows immediately from (1.3.20)-(1.3.21) and the consistency of

�̂ML.

1.3.2 Cram�er-Rao Bound

Since the ML estimates of all of the parameters are consistent, they will also be

asymptotically (large N) eÆcient (i.e., their asymptotic covariance coincides with
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the Cram�er-Rao bound (CRB)). Using a straightforwardmodi�cation of the analysis

in [45], [46], it can be shown that the CRB for the time delays has the following

form:

CRB�1(� ) = 2Re
n�
DP?S�D

�
�
�
�
A�Q�1A

�To
(1.3.25)

where

D(� ) =
�
d (�1) � � � d (�d)

�T
(1.3.26)

d (�i) = �

h
d s(t)

d t

���
Ts��i

� � �
d s(t)

d t

���
NTs��i

iT
(1.3.27)

P?
S�(� ) = I�PS�(� ) = I� S�(� ) (S(� )S�(� ))

�1
S(� ) : (1.3.28)

1.3.3 Computation of the Estimates

For the frame delay estimation problem described in (P2), minimizing (1.3.18) re-

quires only a one-dimensional search, and thus is not overly burdensome. This is in

fact the solution considered in [19]. For (P1), however, the complicated non-linear

dependence of VN on � , especially due to the presence of the determinant, implies

that a multidimensional search is the only method that can be used to �nd the es-

timates. Although the search can be implemented in more sophisticated ways than

brute force evaluation of the cost function on a multidimensional grid (using, for

example, a gradient search, expectation-maximization, or alternating projections),

a more computationally eÆcient solution is still desirable.

A simpler solution is possible if the interference and noise are assumed to be spa-

tially white (e.g., no CCI). Under this assumption, the criterion reduces to a trace

rather than determinant operation. By transforming the data to the frequency

domain, an iterative solution based on the so-called IQML (Iterative Quadratic

Maximum Likelihood) [14] or MODE [15], [47] can be used. The computational

advantage of these techniques results because the cost function depends linearly on

the signal projection matrix PS�(� ). By reparameterizing the matrix PS�(� ) accord-

ing to the coeÆcients of a certain polynomial, and assuming a previous estimate of

these coeÆcients is available, the dependence of PS�(� ) and hence the cost function

on some trial coeÆcients becomes quadratic. The quadratic optimization problem

is then solved in closed form (see [13] for details).

The ML cost function for both spatially and temporally white noise is

f
w
N (� ) = �Tr

nbRys(� ) bR�1ss (� )
bR�ys(� )o = �

1

N
Tr

�
YPS�(� )Y

�
	

(1.3.29)

which satis�es the condition of linear dependence on PS�(� ) stated above. This

condition is not ful�lled by the ML cost function for unknown correlated noise

in (1.3.18) due to the log-determinant operation. Consequently, an IQML-like al-

gorithm can not be directly applied to (1.3.18). The main goal of this chapter is to

present and analyze a cost function that is asymptotically equivalent to the original
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ML criterion (1.3.18), but that is linear in the signal projection matrix and, there-

fore makes possible the computation of the estimates using an IQML or MODE

approach.

1.4 An Asymptotically Equivalent Estimator

We propose computing the delay estimates as the minimizing arguments of the

following criterion function:

gN (� ;W0) = �Tr fW0BN (� )g (1.4.1)

where

W0 , (I�BN (� 0))
�1

(1.4.2)

and BN (� 0) is de�ned as in (1.3.19). A proof that this criterion yields asymptoti-

cally eÆcient delay estimates is given below.

1.4.1 Proof of the Asymptotic Equivalence

To begin, we note that it can be shown that the estimates obtained with (1.4.1) are

consistent. The proof is similar to that in Section 1.3.1 and will be omitted. We

will now establish the asymptotic equivalence between

�̂ 1 = argmin
�

VN (� ) (1.4.3)

�̂ 2 = argmin
�

gN (� ;W0) ; (1.4.4)

which means that

�̂ 2 = �̂ 1 + op

�
N
�1=2

�
; (1.4.5)

where x = op(
) means that x=
 converges to zero in probability. A suÆcient

condition for (1.4.5) to hold is that [39]

g
i
N (� 0;W0) = V

i
N (� 0) + op

�
N
�1=2

�
(1.4.6)

g
ij
N (� 0;W0) = V

ij
N (� 0) + op (1) (1.4.7)

where the superscript (�)
i
denotes the derivative with respect to �i. A double

superscript denotes the corresponding second derivatives.

The proof of (1.4.6) is immediate since

V
i
N (� 0) = �Tr

n
(I�BN (� 0))

�1
Bi
N (� 0)

o
= g

i
N (� 0;W0) : (1.4.8)

The second derivatives also satisfy the equivalence condition (1.4.7) because

V
ij
N (� 0) = �Tr

n
(I�BN (� 0))

�1
B
ij
N (� 0)

o
12



+Tr
n
(I�BN (� 0))

�1
Bi
N (� 0) (I�BN (� 0))

�1
B
j
N (� 0)

o
= g

ij
N (� 0;W0)

+Tr
n
(I�BN (� 0))

�1
Bi
N (� 0) (I�BN (� 0))

�1
B
j
N (� 0)

o
(1.4.9)

and the last term in (1.4.9) is (at least) op (1) since, as shown in Appendix .1,

Bi
N (� 0) = Op

�
N
�1=2

�
, where x = Op(
) means that x=
 is bounded in probability.

1.4.2 Calculation of the Weighting Matrix

The weighting matrix W0 appearing in the proposed cost function depends on the

true value of the delays, and hence is unknown. However, it is well known that

we can replace it with a consistent estimate Ŵ without a�ecting the asymptotic

properties of the estimates. If �̂ is a consistent estimate of � 0, then we can construct

the practical weighting matrix as

Ŵ =
�
I�BN (�̂ )

��1
: (1.4.10)

The estimates obtained from gN (� ;W0) and gN (� ;Ŵ) are asymptotically equiva-

lent because the derivatives of these cost functions satisfy conditions similar to those

stated in (1.4.6) and (1.4.7). The proof is immediate since Ŵ =W0+op (1) (by the

de�nition of consistency), giN (� 0;W0) = Op

�
N
�1=2

�
and g

ij
N (� 0;W0) = Op (1). It

is worth remarking that the practical cost function admits the following expression:

gN (� ;Ŵ) = �Tr
n
Q̂�1=2 R̂ys(� ) R̂

�1
ss (� ) R̂

�

ys(� ) Q̂
�1=2

o
(1.4.11)

where Q̂ = R̂yy � R̂ys(�̂ ) R̂
�1
ss (�̂ ) R̂

�
ys(�̂ ) is a consistent estimate of the correla-

tion matrix of the noise. The criterion above resembles the one in the white-noise

case (1.3.29); the di�erence is that now the signals are prewhitened using an esti-

mate of the noise correlation. While the function in (1.4.11) could have been derived

using purely heuristic reasoning, the development followed herein has allowed us to

prove the equivalence between (1.4.11) and the original criterion (1.3.18), which

would have been diÆcult to do from a simple inspection of those cost functions.

The consistent estimate of the time-delays needed to construct Ŵ can be ob-

tained as the minimizing argument of

hN (� ) , gN (� ; I) = �Tr fBN (� )g (1.4.12)

= �Tr
n
R̂�1=2yy R̂ys(� ) R̂

�1
ss (� ) R̂

�

ys(� ) R̂
�1=2
yy

o
; (1.4.13)

in which the unknown weighting matrix is replaced by the identity, which amounts

to prewhitening the signals according to the total correlation matrix R̂yy instead of

the correlation of the noise, as done in (1.4.11). Again, the proof of the consistency

of hN (� ) is similar to that in Section 1.3.1 and will be omitted. Note that the

criterion fwN (� ) obtained for spatially white noise also provides consistent estimates.
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Nevertheless, as illustrated in the simulations of Section 1.7, its variance will be

much larger than that of the estimates obtained with (1.4.13) when the noise is not

spatially white since fwN(� ) makes no attempt to prewhiten the signals. Therefore,

there is no advantage in employing f
w
N (� ) instead of hN (� ) (apart from a slightly

reduced computational complexity), and the latter is preferred.

1.5 Heuristic Derivations

In the previous section we have directly put forward a new cost function gN(� ;Ŵ)

and determined its statistical properties. In this section, three di�erent heuristic

ways of deriving the new cost function are presented.

1.5.1 Series Expansion of the Logarithm

Note that

BN (� ) = R̂
�

1

2

yy R̂ys(� )R̂
�1
ss (� )R̂

�

ys(� )R̂
�

1

2

yy

= (YY�)�1=2YS�(� ) (S(� )S�(� ))
�1
S(� )| {z }

X

�Y�(YY�)�1=2| {z }
Z

:

If we compare the above equation with

PY� PS�(� ) = Y� (YY�)
�1
YS�(� ) (S(� )S�(� ))

�1
S(� )

= Y�(YY�)�1=2| {z }
Z

� (YY�)�1=2YS�(� ) (S(� )S�(� ))
�1
S(� )| {z }

X

;

we see that BN (� ) and the product of the two projection matrices above must share

the same non-zero eigenvalues. Thus, the eigenvalues of BN (� ) satisfy 0 � �i � 1,

or in the presence of noise �i < 1. Therefore, we can use the series expansion of the

logarithm to express the original ML criterion as follows:

VN (� ) = �Tr fBN (� )g �
1

2
Tr

�
B2
N (� )

	
�

1

3
Tr

�
B3
N (� )

	
+ � � � : (1.5.1)

The function hN (� ), which we have proposed to use in obtaining the initial con-

sistent estimates, is the �rst term of this expansion. Unlike many other estimation

problems (see e.g., [48], [49], [50]), the �rst-order term is not asymptotically equiv-

alent to the original function because limN!1BN (� 0) = I�R
�1=2
yy QR

�1=2
yy is not

equal to zero. The error in this �rst order approximation is \small" when all the

eigenvalues of Q are large with respect to the power of the signals. However, this

situation will seldom be encountered in practice, where usually only some of eigen-

values of Q are large, due to the reception of directional interferers. In order to

maintain not only consistency but also asymptotic eÆciency, all of the terms in the

expansion (1.5.1) must be kept. Since the second and higher-order terms are the

ones that introduce the undesirable nonlinear dependence on the matrix PS�(� ), we
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decide to approximate them. The approximation is not done directly over VN (� ),

but over its derivative. If we di�erentiate (1.5.1) and replace BN(� ) by BN (�̂ ) in

all the second and higher-order terms (this is justi�ed since Bi
N (� 0) = Op

�
N
�1=2

�
),

it results that

V
i
N (� ) ' �Tr

�
Bi
N (� )

�
I+BN (�̂ ) +B2

N (�̂ ) + � � �
�	

(1.5.2)

= �Tr
n
(I�BN (�̂ ))

�1
Bi
N (� )

o
: (1.5.3)

Thus we retrieve the new criterion presented in Section 1.4 since the value of � that

minimizes gN(� ;Ŵ) also nulls (1.5.3).

1.5.2 Eigenvalue Weighting

The derivative of the original ML criterion can be written as

V
i
N (� ) = �

mX
k=1

�
i
k(� )

1� �k(� )
(1.5.4)

while the derivative of the cost function that provides only consistent estimates is

h
i
N (� ) = �

mX
k=1

�
i
k(� ) : (1.5.5)

We notice that the di�erence between the estimator that is asymptotically eÆcient

and the one that is not lies in an appropriate weighting of the eigenvalues. The

second criterion (1.5.5) approaches the original one (1.5.4) when all the nonzero

eigenvalues are much smaller than one, or when all of them have similar values.

Again, this only happens if all the eigenvalues of Q are much larger than the

power of the desired signals. A reasonable approach to approximating the optimal

weighting would be to replace the eigenvalues �k(� ) in (1.5.4) by the eigenvalues

of BN (�̂ ). Using (1.5.4) and the eigendecomposition BN (� ) = U(� )�(� )U�(� ),

this approach results in

VN (� ) ' �Tr
n
(I��(�̂ ))

�1
�(� )

o
(1.5.6)

= �Tr
n
U(� ) (I��(�̂ ))

�1
U�(� )U(� )�(� )U�(� )

o
(1.5.7)

' �Tr
n
U(�̂ ) (I��(�̂ ))

�1
U�(�̂ )BN (� )

o
(1.5.8)

= �Tr
n
(I�BN (�̂ ))

�1
BN (� )

o
= gN (� ;Ŵ) (1.5.9)

which is the cost function proposed in Section 1.4.

Note that in the two approaches above the approximations are always carried out

on the derivative of the ML cost function, and next the function gN(� ;Ŵ) results

by integration. If the approximations had been performed directly on the ML cost

function, the resulting criterion would not have been asymptotically eÆcient.
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1.5.3 First Order Approximation

As stated above, a direct �rst-order approximation of the ML cost function does

not yield an asymptotically eÆcient estimator. However, we can write the ML cost

function as

VN (� ) = log jI�BN(�̂ ) +BN (�̂ )�BN (� )j

= log jI�BN(�̂ )j+ log
���I+ (I�BN (�̂ ))

�1
(BN (�̂ )�BN (� ))

���(1.5.10)
Since limN!1 (BN (�̂ )�BN (� 0)) = 0 and Bi

N (� 0) = Op

�
N
�1=2

�
, it is possible to

maintain the asymptotic eÆciency by only keeping the �rst-order term in the series

expansion of (1.5.10), which is

VN (� ) '
first order

term

log jI�BN (�̂ )j+Tr
n
ŴBN (�̂ )

o
�Tr

n
ŴBN (� )

o
= c+gN (� ;Ŵ) ;

(1.5.11)

where c is a constant. Once more, this coincides with the alternative function we

have proposed.

1.6 Calculating the Estimates with IQML and ESPRIT

In this section we outline how the IQML and ESPRIT algorithms can be applied to

the cost functions that have appeared in the previous sections. Since the objective

in the preceding sections has been to reduce the complexity involved in a direct

minimization of a multidimensional criterion, it does not make sense to optimize

the new cost functions using a search; instead, the use of computationally eÆcient

algorithms is more appropriate. We focus on applications to problem (P1), where

multiple time delays must be estimated. Only a one-dimensional search is required

to implement the exact ML criterion for problem (P2), so the techniques described

below likely do not o�er a signi�cant computational savings for this case.

The general expression of the cost function we consider is that given in (1.4.1),

which can be written as

gN (� ;W) = �
1

N
Tr

n
W1=2 R̂�1=2yy YPS�(� )Y

� R̂�1=2yy W1=2
o

: (1.6.1)

Di�erent criteria are obtained from di�erent choices of the matrixW. That is, ifW

is a consistent estimate ofW0 in (1.4.2) then the asymptotically eÆcient estimator

is obtained; ifW is equal to the identity matrix or equal to R̂yy then the consistent

estimator hN(� ) or the white-noise estimator f
w
N(� ) result, respectively.

If the N temporal samples are transformed into the frequency domain using the

DFT, the signals approximately satisfy the following relationship:

S�(� ) = S�!V(� ) (1.6.2)
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where S! is a diagonal matrix whose entries are the DFT of the vector samples

[s (Ts) ; � � � ; s (N Ts)], and

V(� ) =
�
v (�1) � � � v (�N )

�
(1.6.3)

v (�k) =
�
exp (j!1�k) � � � exp (j!N�k)

�T
(1.6.4)

!i =
2�

N Ts

�
i� 1� 
oor

�
N

2

��
: (1.6.5)

Note that the same notation S(� ) is used for both the time and frequency domain.

It should be clear from the context which one is being referred to. Since the noise

is assumed to be white in time, it is also white in frequency, so all of the estimators

above can be applied in an identical fashion to the frequency rather than time

samples.

1.6.1 IQML Algorithm

Let the elements of the vector g = [g0 � � � gd]
T
be taken from the coeÆcients of the

polynomial

g (z) = g0 z
d + g1 z

d�1 + � � �+ gd (1.6.6)

whose roots are exp (j2��1=NTs) ; � � � ; exp (j2��d=NTs). Since the roots lie on the

unit circle, the coeÆcients satisfy the so-called conjugate symmetry constraint:

gk = g
�

d�k; k = 0; 1; � � � ; d : (1.6.7)

It is straightforward to prove the following equality of projection matrices [13]:

P?
S�(� ) = P

S
�1

! G
= S�1! G

�
G� S��! S�1! G

��1
G� S��! (1.6.8)

where the N �N � d Sylvester matrix G is given by

G =

2
6664

g0 g1 � � � gd 0

0 g0 g1 � � � gd 0
. . .

. . .
. . .

. . .
. . . 0

0 g0 g1 � � � gd

3
7775
T

(1.6.9)

Therefore, minimizing the cost function in (1.6.1) is equivalent to minimizing

~gN (g;W) =
1

N
Tr

n
W

1

2 R̂
�

1

2

yy YS�1! G
�
G� S��! S�1! G

��1
G� S��! Y� R̂

�
1

2

yy W
1

2

o
(1.6.10)

In the IQML algorithm the minimization of (1.6.10) is done iteratively. That

is, the matrix
�
G�k S

��
! S�1! Gk

��1
is computed using a given estimate gk and held

�xed. Then, the resulting criterion is quadratic in gk and can be solved in closed-

form. Details on the implementation of this step subject to the conjugate symmetry
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constraint (1.6.7) and to a certain constraint that avoids the trivial solution (e.g.

kgkk = 1, or Re fg0g = 1) can be found in [13], [14], [51]. The resulting vector gk+1

is used to �x
�
G�k+1 S

��
! S�1! Gk+1

��1
, and the process is repeated until a certain

convergence or failure criterion is satis�ed (see Section 1.7.1).

If we want the matrix W to be a consistent estimate of W0, then we have two

iterative processes: the IQML algorithm itself and the computation of the matrix

W. Since these two processes can be coupled or not, we can choose two di�erent

approaches to implement the complete estimation procedure:

A) Coupled iterations

1. Initialize k = 0, W0 = I and g0 (see Section 1.7.1).

2. Do only one iteration of the IQML algorithm and obtain gk+1.

3. Compute � k+1 from gk+1 using (1.6.6).

4. Compute the weighting matrixWk+1 using � k+1 and expression (1.4.10).

Substitute Wk+1 in the cost function that is being minimized (1.6.10).

5. If the convergence / failure condition is satis�ed, take the estimate of the

delays as �̂ = � k+1. If not, set k = k + 1 and return to step 2.

B) Decoupled iterations

1. Initialize W0 = I and g0 (see Section 1.7.1).

2. Perform all iterations of the IQML algorithm until it converges or fails

(not only one iteration as in the procedureA). The result is the vector g1,

and the corresponding time-delay estimate � 1 is obtained using (1.6.6).

3. Compute the weighting matrix W1 using � 1 and expression (1.4.10).

Introduce W1 in the cost function (1.6.10).

4. Again perform all iterations of the IQML algorithm until convergence

or failure occurs. The result is the vector g2, and the corresponding

time-delay estimate is the �nal estimate: �̂ = � 2.

As we will show in the simulation results, the method A presents a lower esti-

mation error and requires less iterations of the IQML algorithm to converge than

the method B. On the other hand, their computational loads are similar, since in

the method B the weighting matrix is computed only once. Note that the decou-

pled iterations method is the one that stems directly from the theoretical results.

That is, the delay estimation is divided into two stages: i) obtaining the consistent

estimate, ii) obtaining the asymptotically eÆcient estimate. However, the coupled

iteration method is a logical ad hoc modi�cation of the decoupled one given the

two iterative processes needed by the proposed estimator. The coupled iterations

method does not stem directly from the theoretical study, but it happens to have

certain advantages and is preferred in front of the decoupled one.
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1.6.2 ESPRIT Algorithm

If d < m, d < N and A is full rank, it is possible to exploit the Vandermonde

structure of V(� ) using the ESPRIT algorithm [7]. The application of this method

to time-delay estimation in the white-noise case is detailed in [13]. Given the sim-

ilarity between the cost functions fwN (� ) in (1.3.29) and gN (� ;W) in (1.6.1), the

extension of ESPRIT to the new criterion is immediate. In our case, the matrix

F = Y� R̂
�1=2
yy W1=2 plays exactly the same role as Y� in the white-noise case.

Let E denote the d singular vectors of F associated with the largest singular

values. Next, E1 (resp. E2) is constructed by taking the �rst (resp. last) N�Æ rows

of E. The matrices S!1 and S!2 are de�ned similarly. Let the d � d matrix 	 be

the solution of the following overdetermined system of linear equations:

S�!1E2 = S�!2E1	 (1.6.11)

The time-delay estimates can be determined from the phase (\) of the eigenvalues

�i of 	 (see [7], [13]):

�̂i =
N Ts \�i

2� Æ
i = 1; � � � ; d : (1.6.12)

The shift parameter Æ must satisfy two conditions:

Æ � N � d ; Æ <
NTs

2maxi �i
(1.6.13)

The �rst one prevents the system (1.6.11) from being inde�nite, while the second

guarantees that the association between eigenvalues and delays is unique. It is

possible to solve the system of equations (1.6.11) using either Least Squares (LS)

or Total Least Squares (TLS) [52].

1.7 Simulation Results

In this section we analyze the performance of the cost functions proposed above by

means of numerical simulations. Our performance metric is the Root Mean Squared

Error (RMSE) of the delay estimates produced by each algorithm. We calculate

the RMSE for a wide variety of scenarios as a function of the number of samples

N , the number of sensors m, the signal to interference ratio, and the relative delay

and DOA of the multipath re
ections.

1.7.1 Simulation Parameters

All simulations are conducted assuming that d = 2 delayed versions of a known

signal are received by a uniform linear array with antennas spaced 0:5� apart. This

known signal is a concatenation of K truncated and sampled Nyquist square-root

raised cosine pulses. Each pulse has a bandwidth equal to (1 + �) =2Tc, is truncated

to the interval [�3Tc; 3Tc], and the sampling period is Tc=2, so there are 13 samples

in each pulse (see Figure 1.1). Note that Tc is simply a normalization constant, and
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Figure 1.1. Samples of a single pulse and the underlying analog signal.

� is the roll-o� factor which we set equal to 0:2. The use of this type of signal is

of interest because each pulse may represent the output of the despreader at every

symbol period in a DS-CDMA system. In this type of system, accurate timing

estimation is fundamental to achieving satisfactory performance.

The noise plus interference �eld in which the array operates consists of: i)

spatially and temporally white Gaussian noise, and ii) a temporally white Gaussian

interference at DOA �30o relative to the array broadside, which is responsible

for the spatial correlation of the noise plus interference �eld. Both the noise and

the interference are uncorrelated with the desired signal. The remaining scenario

parameters, except when one of them is varied, are as follows: m = 6 antennas;

K = 3 pulses constituting each signal; delays of the two signals equal to 0 and 0:4Tc;

DOAs of those signals: 0o, 10o, respectively; Signal to Noise Ratio (SNR) of the

�rst signal: 16 dB; Signal to Interference Ratio (SIR) of the �rst signal: �3 dB; the

second signal is attenuated 3 dB with respect to the �rst, and they are in phase at

the �rst sensor. In all cases, only the 7 DFT bins with the strongest signal content

are employed by IQML and ESPRIT for estimation of the time delays.

In the �gures below, we show the RMSE in the estimation of the time-delay

of the �rst signal (the time-delay estimate of the second signal behaves similarly)

obtained from di�erent cost functions and optimization algorithms. The RMSEs are
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computed from 500 Monte Carlo realizations of the noise and interference, and they

are compared to the CRB given by (1.3.25). Each curve in the �gures corresponds

to one of the following methods:

1. Asymptotically eÆcient estimator gN (� ;Ŵ) given by (1.4.11). The minimiza-

tion is carried out using IQML, with the weight matrix Ŵ recomputed at every

IQML iteration (i.e., the coupled iteration method A of Section 1.6.1).

2. Consistent estimator gN (� ; I) given by (1.4.13). The estimates are calculated

using LS-ESPRIT, since we have observed that in this case ESPRIT somewhat

surprisingly yields a lower RMSE than IQML.

3. ML estimator in spatially white noise fwN (� ) given by (1.3.29), with the esti-

mates obtained via IQML as in [13].

4. Asymptotically eÆcient estimator gN (� ;Ŵ) given by (1.4.11). The minimiza-

tion is carried out using IQML twice, but the matrix Ŵ is computed after

IQML has converged (i.e. the decoupled iteration method B in Section 1.6.1).

The performance of this method is shown only in Figure 1.2, and it is referred

to as IQML \2 iterations".

Only the RMSEs are plotted because these four methods are essentially unbiased

(i.e., their biases are much smaller than their standard deviations). The initial

value of Ŵ used in methods 1 and 4 above is the identity matrix. In these methods

and also in method 3, the matrix G�S��! S�1! G appearing in the IQML algorithm

is initialized using estimates obtained with ESPRIT. We have noticed that the

alternative of initializing this matrix to the identity results in an increased RMSE.

In all cases, LS-ESPRIT is used since the more complicated TLS-ESPRIT does not

provide an appreciable performance improvement. The displacement between the

two data structures in ESPRIT is Æ = 2. IQML is implemented with the quadratic

constraint kgk = 1, since it seems to give better results than the linear constraint

Re fg0g = 1. The IQML iterations are terminated when either of the following is

satis�ed:

� kgk � gk�1k < � = 10�4. (Any value of � between 10�2 and 10�4 provides

essentially the same performance.)

� the number of iterations > 50

1.7.2 E�ect of the Number of Samples

The �nite-sample and asymptotic performance of the four methods above is il-

lustrated in Figure 1.2. As predicted by the theoretical study, the RMSE of the

proposed cost functions (methods 1 and 4) tend to the CRB as the number of sam-

ples (equivalently, as the number of pulses) increases. Although both methods are

asymptotically eÆcient, method 1 shows a lower RMSE than method 4 for a small

number of samples (e.g., the former attains the CRB for 4 or more pulses, whereas
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Figure 1.2. RMSE of the proposed estimators as a function of the number of

training pulses. Parameters: �1 = 0o; �2 = 10o; �i = �30o; �1 = 0; �2 = 0:4Tc; m =

6 antennas; SNR1 = 16dB; SIR1 = �3 dB; SNR1=SNR2 = 3dB.

the latter needs at least 7 pulses). Another advantage of method 1 over method 4

is that fewer iterations of IQML are required for convergence. For instance, when

the number of received pulses is 3, the number of iterations required by method 1

is 5:59� 0:93 (mean � standard deviation), while method 4 needs 7:66� 1:18 itera-

tions. Though the number of iterations varies depending on the scenario, in the vast

majority of the cases we have simulated it is less than 15 and the di�erence between

method 1 and 4 is approximately constant. Thus, the computational time required

for the optimization is reduced by several orders of magnitude thanks to the use of

IQML and ESPRIT instead of minimizing (1.3.18) or (1.4.11) via a search.

Since method 1 has some advantages over method 4, the former is used for the

rest of the simulations. The small di�erence between its RMSE and the CRB vis-

ible in Figures 1.3-1.6 occurs because the method has not achieved its asymptotic

behaviour for signals formed by only 3 pulses. Also as predicted by the theoretical

study, method 2 does not attain the CRB, but performs much better than the esti-

mator designed for the white-noise case (method 3). This occurs because method 2

(cost function gN(� ; I)) takes into account the spatial correlation of the noise �eld,

though not in an optimal way. It is worth remarking that, because of its simplicity
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(only ESPRIT is applied) and its low RMSE, method 2 is an excellent initialization

scheme for the asymptotically eÆcient estimators based on IQML. The RMSE ob-

tained with the white-noise estimator is plotted for comparison purposes, and the

severe degradation that it undergoes when the noise �eld is spatially correlated is

evident in all the simulations.

1.7.3 E�ect of the Number of Sensors

Results showing the e�ect of varying the number of sensors are given in Figure 1.3.

In all cases, method 1 outperforms method 2, and both are clearly superior to the

white-noise estimator. For the number of sensors shown in the �gure, the CRB

decreases slightly faster than 1=m. Now, however, the RMSE of the estimates ob-

tained with gN (� ;Ŵ) do not approach the CRB as the number of sensors increases.

This behaviour coincides with two well-known results in sensor array processing: As

the data grows in a dimension di�erent from the dimension in which the parame-

ters are estimated, i) the deterministic ML estimator is not asymptotically eÆcient

[47], [46], and ii) the IQML algorithm is inconsistent [53] and its RMSE does not

necessarily decrease [54].

Another e�ect is that the number of iterations needed by IQML to converge

increases with the number of sensors. Although beyond the scope of this paper, it

is worth noting that the performance of the methods for a large number of antennas

can be improved using a modi�cation of the signal matrix as in the MODE algorithm

[15]. That is, the term Z = Y�R̂
�1=2
yy Ŵ R̂

�1=2
yy Y appearing in g(� ;Ŵ) can be

replaced by Ê ~�Ê�, where Ê represents the eigenvectors of Z associated with the

d largest eigenvalues, and ~� is a certain diagonal weighting matrix.

1.7.4 E�ect of the SIR

The objective of this simulation, whose results are shown in Figure 1.4, is to show

that the RMSE of the consistent and asymptotically eÆcient estimators proposed

herein are robust against arbitrarily strong interferers. Therefore, they are valid

approaches for time-delay estimation in interference-limited situations, such as most

mobile communication systems. Note that the estimator designed for a white-noise

scenario completely fails for SIR < �10 dB.

1.7.5 Closely Spaced Signals

In Figures 1.5 and 1.6, we investigate the ability of the di�erent methods to resolve

closely-spaced signals in the temporal and spatial domains. As with all time-delay

estimators that do not assume parameterized spatial signatures, the CRB grows

without limit as the relative delay of the signals decreases. We observe that the

estimator we have proposed is always very close to the CRB, except for the case

of relative delays smaller than 0:1Tc. However, this range of delays lacks practical

interest because reliable delay estimates cannot be expected for any algorithm; i.e.,
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Figure 1.3. RMSE of the proposed estimators as a function of the number of

sensors. Parameters: �1 = 0o; �2 = 10o; �i = �30o; �1 = 0; �2 = 0:4Tc; K =

3 pulses; SNR1 = 16dB; SIR1 = �3 dB; SNR1=SNR2 = 3dB.
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Figure 1.4. RMSE of the proposed estimators as a function of the interference

power. Parameters: �1 = 0o; �2 = 10o; �i = �30o; �1 = 0; �2 = 0:4Tc; m =

6 antennas; K = 3 pulses; SNR1 = 16dB; SNR1=SNR2 = 3dB.
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Figure 1.5. RMSE of the proposed estimators as a function of time-delay sepa-

ration. Parameters: �1 = 0o; �2 = 10o; �i = �30o; �1 = 0; m = 6 antennas; K =

3 pulses; SNR1 = 16dB; SIR1 = �3 dB; SNR1=SNR2 = 3dB.

in this range the best achievable standard deviation is larger than half the time-delay

separation between the two signals [38].

When the DOA separation of the signals is smaller than the beamwidth of the

sensor array, the CRB increases as the DOA separation decreases; but it does not

tend to in�nity as in the case of delay separation. Also when the DOA separation

is smaller than the beamwidth, ESPRIT undergoes a severe degradation because

the matrix A tends to be rank de�cient. However, the performance of the proposed

method is always very close to the CRB, even though it is initialized with ESPRIT.

1.7.6 Performance Using a Search

We have also analyzed the RMSEs obtained when the criteria VN (� ) in (1.3.18),

gN (� ;Ŵ) in (1.4.11), gN(� ; I) in (1.4.13), and f
w
N (� ) in (1.3.29) are minimized

using a search. We have observed that direct minimization of fN (� ) and gN(� ;Ŵ)

and method 1 all yield nearly the same RMSE even for a small number of samples.

Therefore, the new cost function we have proposed, besides being asymptotically

eÆcient, does not entail any degradation in the �nite-sample case with respect to
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Figure 1.6. RMSE of the proposed estimators as a function of DOA separation.

Parameters: �1 = 0o; �i = �30o; �1 = 0; �2 = 0:4Tc; m = 6 antennas; K =

3 pulses; SNR1 = 16dB; SIR1 = �3 dB; SNR1=SNR2 = 3dB.
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Figure 1.7. Comparison with the search-based estimators. Parameters: �1 =

0o; �2 = 10o; �i = �30o; �1 = 0; �2 = 0:4Tc; m = 6antennas; SNR1 = 16dB; SIR1 =

�3 dB; SNR1=SNR2 = 3dB.

the exact ML estimator (1.3.18). Moreover, the minimization using IQML does

not introduce any impairment with respect to the use of a search. Secondly, the

minimization of gN (� ; I) by means of a search or using ESPRIT (i.e., method

2) results in approximately the same RMSE. On the contrary, the RMSE obtained

from the minimization of fwN(� ) using a search is slightly smaller than that obtained

using IQML (method 3). Numerical results supporting these claims are provided in

Figure 1.7.

1.8 Conclusions

Synchronization and time delay estimation are important components of many sig-

nal processing and communications systems. This paper has focused on how mul-

tiple receive antennas can be used to improve the accuracy of such systems. An

antenna array is particularly useful in situations where multipath and co-channel

interference are limiting factors on performance. The spatial selectivity of the array

provides an additional dimension in which to di�erentiate the desired user's signal

from the noise and interference. Under the assumption that the noise and CCI are

spatially colored but temporally white Gaussian processes, the maximum likelihood

solution to the general time delay estimation problem was derived. The result-

ing concentrated criterion for the delays is highly non-linear, and not conducive to

simple minimization procedures. Using various techniques, it was shown how the

optimal ML criterion could be approximated by a simpler cost function that was

shown to provide asymptotically equivalent (and hence statistically eÆcient) delay

estimates. The form of the new criterion lends itself to minimization by the IQML

algorithm, an iterative approach that avoids the need for gradient-based or exhaus-

tive searches. The existence of simple yet accurate initialization schemes based
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on ESPRIT or identity weightings makes the approach viable for practical imple-

mentation. A number of simulation studies were presented that demonstrate the

performance advantage of the proposed technique over competing delay estimators.

.1 Appendix

In this appendix we compute the asymptotic order of the matrix Bi
N (� 0). Using

(1.2.6), (1.3.4)-(1.3.6), (1.3.19), and the expression for the derivative of a projection

matrix [39]

Pi
S�

= P?
S�

(S�)
i
(S�)

y
+ (� � �)

�
(.1.1)

where (�)
y
denotes the pseudoinverse, we get

Bi
N (� 0) =

1

N
R̂�1=2yy EP?S� (S

�)
i
A�R̂�1=2yy + (� � �)

�
(.1.2)

+
1

N
R̂�1=2yy EP?S� (S

�)
i
(S�)

y
E�R̂�1=2yy + (� � �)

�
(.1.3)

where all functions of � are evaluated at � 0, the relation SP?
S�

= 0 is used, and

the notation (� � �)
�
means that the same expression appears again transposed and

conjugated. In order to obtain an asymptotic expression, the matrix R̂yy is replaced

by Ryy and the terms in (.1.3) are neglected. Thus, we can write

Bi
N (� 0) '

1

N
R�1=2yy EP?S� (S

�)
i
A�R�1=2yy + (� � �)

�
: (.1.4)

The correlation between the k,l th element of Bi
N (� 0) and the r,s th element of

B
j
N (� 0) for any value k; l; r; s = 1; � � � ;m and i; j = 1; � � � ; d is
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where [�]:;k represents the k th column of a given matrix, and E f�g is the expectation

operator. For the noise model that we have considered,

E

�
E�

h
R
�

1

2

yy

i
:;r

h
R
�

1

2

yy

i�
:;k
E

�
= I

�h
R
�

1

2

yy

i�
:;k
Q
h
R
�

1

2

yy

i
:;r

�
(.1.6)

= I
h
R
�

1

2

yy QR
�

1

2

yy

i
k;r

: (.1.7)

This result and the fact that each row of S only depends on one variable yield
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where the second term has been omitted because it can be readily obtained from

the �rst one and (.1.5) by an appropriate change of indices. Since we have assumed

that s (t) is a �nite-average-power signal and is sampled above the Nyquist rate, the

order of hT (�j)P
?

S�
hc (�i) is O (N). Therefore, the correlation (.1.5) of the elements

of BN(� 0)
i
is O

�
N
�1
�
, which completes the proof that Bi

N (� 0) = Op

�
N
�1=2

�
.
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