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3.20.1 Introduction and background
The principles behind obtaining information from measuring an acoustic or electro-magnetic field at
different points in space have been understood for many years. Techniques for long-baseline optical inter-
ferometry were known in the mid-19th century, where widely separated telescopes were proposed for
high-resolution astronomical imaging. The idea that direction finding can be performed with two acous-
tic sensors has been around at least as long as the physiology of human hearing has been understood. The
mathematical duality observed between sampling a signal either uniformly in time or uniformly in space
is ultimately just an elegant expression of Einstein’s theory of relativity. However, most of the technical
advances in array signal processing have occurred in the last 30 years, with the development and prolif-
eration of inexpensive and high-rate analog-to-digital (A/D) converters together with flexible and very
powerful digital signal processors (DSPs). These devices have made the chore of collecting data from
multiple sensors relatively easy, and helped give birth to the use of sensor arrays in many different areas.

Parallel to the advances in hardware that facilitated the construction of sensor array platforms were
breakthroughs in the mathematical tools and models used to exploit sensor array data. Finite impulse
response (FIR) filter design methods originally developed for time-domain applications were soon
applied to uniform linear arrays in implementing digital beamformers. Powerful data-adaptive beam-
formers with constrained look directions were conceived and applied with great success in applications
where the rejection of strong interference was required. Least-mean square (LMS) and recursive least-
squares (RLS) time-adaptive techniques were developed for time-varying scenarios. So-called “blind”
adaptive beamforming algorithms were devised that exploited known temporal properties of the desired
signal rather than its direction-of-arrival (DOA).

For applications where a sensor array was to be used for locating a signal source, for example
finding the source’s DOA, one of the key theoretical developments was the parametric vector-space
formulation introduced by Schmidt and others in the 1980s. They popularized a vector space signal
model with a parameterized array manifold that helped connect problems in array signal processing
to advanced estimation theoretic tools such as Maximum Likelihood (ML), Minimum Mean-Square
Estimation (MMSE) the Likelihood Ratio Test (LRT) and the Cramér-Rao Bound (CRB). With these
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860 CHAPTER 20 Applications of Array Signal Processing

tools, one could rigorously define the meaning of the term “optimal” and performance could be compared
against theoretical bounds. Trade-offs between computation and performance led to the development of
efficient algorithms that exploited certain types of array geometries. Later, concerns about the fidelity
of array manifold models motivated researchers to study more robust designs and to focus on models
that exploited properties of the received signals themselves.

The driving applications for many of the advances in array signal processing mentioned above
have come from military problems involving radar and sonar. For obvious reasons, the military has
great interest in the ability of multi-sensor surveillance systems to locate and track multiple “sources
of interest” with high resolution. Furthermore, the potential to null co-channel interference through
beamforming (or perhaps more precisely, “null-steering”) is a critical advantage gained by using multiple
antennas for sensing and communication. The interference mitigation capabilities of antenna arrays and
information theoretic analyses promising large capacity gains has given rise to a surge of applications for
arrays in multi-input, multi-output (MIMO) wireless communications in the last 15 years. Essentially
all current and planned cellular networks and wireless standards rely on the use of antenna arrays for
extending range, minimizing transmit power, increasing throughput, and reducing interference. From
peering to the edge of the universe with arrays of radio telescopes to probing the structure of the brain
using electrode arrays for electroencephalography (EEG), many other applications have benefited from
advances in array signal processing.

In this chapter, we explore some of the many applications in which array signal processing has
proven to be useful. We place emphasis on the word “some” here, since our discussion will not be
exhaustive. We will discuss several popular applications across a wide variety of disciplines to indicate
the breadth of the field, rather than delve deeply into any one or try to list them all. Our emphasis will be
on developing a data model for each application that falls within the common mathematical framework
typically assumed in array processing problems. We will spend little time on algorithms, presuming that
such material is covered elsewhere in this collection; algorithm issues will only be addressed when the
model structure for a given application has unique implications on algorithm choice and implementation.
Since radar and wireless communications problems are discussed in extensive detail elsewhere in the
book, our discussion of these topics will be relatively brief.

3.20.2 Radar applications
We begin with the application area for which array signal processing has had the most long-lasting
impact, dating back to at least World War II. Early radar surveillance systems, and even many still in
use today, obtain high angular resolution by employing a radar dish that is mechanically steered in order
to scan a region of interest. While such slow scanning speeds are suitable for weather or navigation
purposes, they are less tolerable in military applications where split-second decisions must be made
regarding targets (e.g., missiles) that may be moving at several thousand miles per hour. The advent of
electronically scanned phased arrays addressed this problem, and ushered in the era of modern array
signal processing.

Phased arrays are composed of from a few up to several thousand individual antennas laid out in a line,
circle, rectangle or even randomly. Directionality is achieved by the process of beamforming: multiplying
the output of each antenna by a complex weight with a properly designed phase (hence the term
“phased” array), and then summing these weighted outputs together. The conventional “delay-and-sum”
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3.20.2 Radar Applications 861

FIGURE 20.1

A phased array radar enclosed in the nose of a fighter jet.

beamforming scheme involves choosing the weights to phase delay the individual antenna outputs such
that signals from a chosen direction add constructively and those from other directions do not. Since
the weights are applied electronically, they can be rapidly changed in order to focus the array in many
different directions in a very short period of time. Modern phased arrays can scan an entire hemisphere
of directions thousands of times per second. Figures 20.1 and 20.2 show examples of airborne and
ground-based phased array radars.

For scanning phased arrays, a fixed set of beamforming weights is repeatedly applied to the antennas
over and over again, in order to provide coverage of some area of interest. Techniques borrowed from
time-domain filter design such as windowing or frequency sampling can be used to determine the
beamformer weights, and the primary trade-off is beamwidth/resolution versus sidelobe levels. Adaptive
weight design is required if interference or clutter must be mitigated. In principle, the phased array
beamformer can be implemented with either analog or digital hardware, or a combination of both. For
arrays with a very large number of antennas (e.g., the Patriot radar has in excess of 5000 elements),
analog techniques are often employed due to the hardware and energy expense required in implementing
a separate RF receive chain for each antenna. Hybrid implementations are also used in which analog
beamforming over subsets of the array is used to create a smaller number of signal streams, which are then
processed by a digital beamformer. This is a common approach, for example, in shipborne radar systems,
where the targets of interest (e.g., low altitude cruise missiles) are typically located near the horizon. In
such systems, analog beamforming with vertically-oriented strips of antennas are used to create a set
of narrow azimuthal beams whose outputs can be flexibly combined using digital signal processing.
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862 CHAPTER 20 Applications of Array Signal Processing

FIGURE 20.2

The phased array used for targeting the Patriot surface-to-air missile system, composed of over 5000 indi-
vidual elements.

In this section, we will briefly discuss the two radar array applications that have received the most
attention in the signal processing literature: space-time adaptive processing (STAP) and MIMO radar.
Since these are discussed in detail elsewhere in the book, our discussion will not be comprehensive.
While STAP and MIMO radar applications are typically used in active radar systems, arrays are also
useful for passive radars, such as those employed in radio astronomy. We will devote a separate section
to array signal processing for radio astronomy and discuss this application in much more detail, since
it is not addressed elsewhere in the book.

3.20.2.1 Space-time adaptive processing
In many tactical military applications, airborne surveillance radars are tasked with providing location
and tracking information about moving objects both on the ground and in the air. These radars typically
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3.20.2 Radar Applications 863
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FIGURE 20.3

Airborne STAP scenario with clutter and jamming.

use pulse-Doppler techniques since measuring the velocity of the objects of interest (or “targets”) is a key
to accurately tracking them. As depicted in Figure 20.3, even when the targets are airborne, the transmit
mainbeam and sidelobes will still illuminate the ground, especially when the radar look-direction is
at a negative elevation angle (the targets may be below the radar platform). This means that the radar
returns will contain significant energy from ground reflections, referred to as clutter. In addition, since
pulse-Doppler techniques require an active radar, the frequency support of the radar signal is known,
and an adversary can employ strong jamming to further mask the target returns. Often, the target signal
is many tens of dB (e.g., 50 or more) weaker than the combination of jamming and clutter.

The difficulty of the situation is revealed by Figure 20.4, which shows the angle-Doppler power
spectrum of data that contains a target together with clutter and jamming at a particular range. The
jamming signal is due to a point source, so it is confined to a single arrival angle, but the jamming signal
extends across the entire bandwidth of the data. The clutter energy lies on a ridge that cuts across the
angle-Doppler space in a direction that is a function of the heading, altitude and velocity of the radar, and
the current range bin of interest. Clutter in front of the radar will have a positive Doppler, and that behind
it will be negative (as seen in Figure 20.3). Compared with the clutter and jamming, the target signal is
weak and cannot be distinguished from the background due to the limited dynamic range of the receiver.
Doppler filtering alone is not sufficient to reveal the target, since the jamming signal cuts across the entire
bandwidth of the signal. On the other hand, using spatial filtering (beamforming) to null the jammer
will still leave most of the clutter untouched. What is needed is a two-dimensional space-time filter. The
process of designing and applying such a filter is referred to as space-time adaptive processing (STAP).

To better place STAP in the context of array signal processing problems, consider Figure 20.5 which
depicts how data is organized in an M-antenna pulse-Doppler radar. The radar transmits a series of K
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FIGURE 20.4

Angle-Doppler spectrum with weak target in the presence of clutter and jamming.
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FIGURE 20.5

Organization of data for range bin r in STAP pulsed-Doppler radar.
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3.20.2 Radar Applications 865

pulses separated in time by a fixed pulse repetition interval (PRI). In order to focus sufficient energy to
obtain a measurable return from a target, the transmitted pulse is typically a very spatially focused signal
steered towards a particular azimuth and elevation angle or look direction. However, the mathematical
description of the STAP process can be described independently of this assumption. In between the
pulses, the radar collects the returns from each of the M antennas, which are sampled after the received
data is passed through a pulse-compression matched filter. Each sample corresponds to the aggregate
contribution of scatterers (clutter and targets, if such exist) at a particular range together with any noise,
jamming or other interference that may be present. The range for a given sample is given by the speed
of light multiplied by half the time interval between transmission of the pulse and the sampling instant.
Suppose we are interested in a particular range bin r. As shown in the figure, we will let

ỹ(t) =
⎡⎢⎣ ỹ1(t)

...

ỹM (t)

⎤⎥⎦ , (20.1)

Y0 = [
ỹ(1) · · · ỹ(K )

]
(20.2)

represent the M × 1 vector of returns from the array after pulse t and the M × K matrix of returns from
all K pulses for range bin r, respectively.

Alternatively, as shown in Figure 20.6, the data can be viewed as forming a cube over M antennas,
K pulses, and B total range bins. Each range bin corresponds to a different slice of the data cube. Data
from adjacent range bins Yk will be used to counter the effect of clutter and jamming in the range bin of
interest, which we index with k = 0. The time required to collect the data cube for a given look direction
is referred to as a coherent processing interval (CPI). If the radar employs multiple look directions, a
separate CPI is required for each. Assuming the target, clutter and jamming are stationary over different
CPIs, data from these CPIs can be combined to perform target detection and localization. However,
in our discussion here we will assume that data from only a single CPI is available to determine the
presence or absence of a target in range bin r.

K pulses
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FIGURE 20.6

STAP data cube showing slices for range bin of interest (Y0) and secondary range bin (Yk ).
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If a target is present in the data set Y0, then the received signal can be modeled as

ỹ(t) = b0a(θ0, φ0)e
jω0t +

Dc∑
i=1

bi a(θi , φi )e
jωi t +

D j∑
j=1

a(θ∗
j , φ

∗
j )x j (t)+ n(t)

︸ ︷︷ ︸
ẽ(t)

, (20.3)

where bi is the amplitude of the return from the ith scatterer (i = 0 corresponds to the target), (θi , φi ) are
the azimuth and elevation angles of the ith scatterer, ωi is the corresponding Doppler frequency, a(θ, φ)
is the response of the M-element receive array to a signal from direction (θi , φi ), x j (t) is the signal
transmitted by the jth jammer, (θ∗

j , φ
∗
j ) denote the DOA of the jth jammer signal, Dc represents the

number of distinct clutter sources, D j the number of jammers, and n(t) corresponds to any remaining
background noise and interference. We have also defined ẽ(t) to contain all received signals except that
of the target. Note that the above model assumes the relative velocity of the radar and all scatterers is
constant over the CPI, so that the Doppler effect can be described as a complex sinusoid.

Technically, the amplitude and Doppler terms bi andωi will also depend on the azimuth and elevation
angles of the ith scatterer since the Doppler frequency is position-dependent and the strength of the
return is a function of the transmit beampattern in addition to the intrinsic radar cross section (RCS)
of the scatterer. This is clear from Figure 20.7, which shows the geometry of the airborne radar with
respect a clutter patch on the ground at some range r. The Doppler frequency for the given clutter patch
at azimuth θ and elevation φ can be determined from the following equations:

sin φ = H

r
+ r2 − H2

2r(re + H)
, (20.4)

cosα = sin θ cosφ, (20.5)

ω = 4πV

λ
cosα, (20.6)

FIGURE 20.7

Geometry for determining the Doppler frequency due to a ground clutter patch at range r.
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where re denotes the earth’s radius, H is the altitude of the radar, and α is the angle between the
velocity vector of the radar and the clutter patch. To simplify the notation, we have dropped the explicit
dependence of bi and ωi on θi , φi . While the highest Doppler frequencies obviously occur for small
α (forward- or rear-looking radar), the fact that cosα changes relatively slowly for small α compared
with α near 90◦ means that the Doppler spread of the clutter for a forward- or rear-looking radar will
be smaller than that for the side-looking case.

Rather than working with the data matrix Y0, for STAP it is convenient to vectorize the data as
follows:

y0 = vec(Y0) =
⎡⎢⎣ ỹ(1)

...

ỹ(K )

⎤⎥⎦ = b0s(θ0, φ0, ω0)+ e0, (20.7)

where e0 is defined similarly to y0 for the clutter and jamming, and where

s(θ0, φ0, ω0) = vec
(

a(θ0, φ0)
[
e jω0 e j2ω0 · · · e j Kω0

])
(20.8)

=
⎡⎣ e jω0

...

e j Kω0

⎤⎦⊗ a(θ0, φ0). (20.9)

The M K × 1 vector y0 is the space-time snapshot associated with the given range bin (r) of interest. To
detect whether or not a target signal was present in y0, one may be tempted to use a minimum-variance
distortionless response (MVDR) space-time filter of the form

w(θ, φ, ω) = R−1
y0

s(θ, φ, ω)

sH (θ, φ, ω)R−1
y0 s(θ, φ, ω)

, (20.10)

apply it to y0 for various choices of (θ, φ, ω), which then should lead to a peak in the filter output
when (θ, φ, ω) corresponds to the parameters of the target. The problem with this approach is that
we will not have enough data available to estimate the covariance Ry0 ; if the target signal is only
present in this range bin, then with a single CPI we only have a single snapshot that possesses this
covariance.

Fortunately, an alternative approach exists, since it can be shown via the matrix inversion lemma
(MIL) that the optimal MVDR space-time filter is proportional to another vector that can be more readily
estimated:

w(θ, φ, ω) ∝ R−1
e0

s(θ, φ, ω), (20.11)

which depends on the covariance Re0 of the clutter and jamming. In particular, STAP relies on the
assumption that the statistics of the clutter and jamming in range bins near the one in question are
similar, and can be used to estimate Re0 . For example, let S0 = {k1, k2, . . ., kNs } represent a set
containing the indices of Ns target-free range bins near r (since the target signal may leak into range
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868 CHAPTER 20 Applications of Array Signal Processing

bins immediately adjacent to bin r, these are typically excluded), then a sample estimate of Re0 may be
formed as

R̂e0 =
∑
k∈S0

ykyH
k = ��H , � = [

yk1 . . . ykNs

]
, (20.12)

where yk is the space-time snapshot from range bin k. The Ns samples that compose � are referred to
as secondary data vectors.

Implementation of the space-time filter in (20.11) using a covariance estimate such as (20.12) is
referred to as the “fully adaptive” STAP algorithm. The number Ns of secondary data vectors chosen
to estimate Re0 is a critical parameter. If it is too small, a poor estimate will be obtained; if it is too
large, then the assumption of statistical similarity may be strained. Another critical parameter is the
rank of Re0 . While in theory Re0 may be full rank, in practice its effective rank ρ is typically much
smaller than its dimension MK, since the clutter and jamming are usually orders of magnitude stronger
than the background noise. According to Brennan’s rule [1], the value of ρ for a uniform linear array
is M + (K − 1)β, where β is a factor that depends on the speed of the array platform and the pulse
repetition frequency (PRF), and is usually between 0.5 and 1.5. The rank of Re0 for non-linear array
geometries will be greater, although no concise formula exists in the general case. Factors influencing
the rank of Re0 include the beamwidth and sidelobes of the transmit pulse (narrower pulses and lower
sidelobes mean smaller ρ), the presence of intrinsic clutter motion (e.g., leaves on trees in a forest)
or clutter discretes (strong specular reflectors), and whether the radar is forward- or side-looking (the
Doppler spread of the clutter and hence ρ is much smaller in the forward-looking case).

The rank of Re0 is important in determining the minimum value for Ns required to form a sufficiently
accurate sample estimate. A general rule of thumb is that the number of required samples is on the order
of 2ρ–5ρ. Even when these many stationary secondary range bins are available, Ns may still be much
smaller than MK, and R̂e0 will not be invertible. In such situations, a common remedy is to employ a
diagonal loading factor δ, and use the MIL to simplify calculation of the inverse:(

R̂e0 + δI
)−1 =

(
��H + δI

)−1
(20.13)

= 1

δ

(
I − �

(
�H � + δI

)−1
�H

)
. (20.14)

Another approach is to use a pseudo-inverse based on principal components.
Still, the computation involved in implementing the fully adaptive STAP algorithm is often pro-

hibitive. The dimension MK of Re0 is often in the hundreds, and computational costs add up quickly
when one realizes the STAP filtering must be performed in multiple range bins for each look direction.
Most of the STAP research in recent years has been aimed at reducing the computational load to more
reasonable levels. Two main classes of approaches have been proposed: (1) partially adaptive STAP
and (2) parametric modeling. In the partially adaptive approach, the dimensions of the space–time data
slice are reduced by means of linear transformations in space or time or both:

Y0 → TaY0TH
ω . (20.15)

Techniques for choosing the transformation matrices include beamspace methods, Doppler binning,
PRI staggering, etc. The classical moving target indicator (MTI) approach can be thought of as falling
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in this class of algorithms for the special case where Ta is one-dimensional. The dimension reduction
achieved by partially adaptive methods not only reduces the computational load, but it improves the
numerical conditioning and decreases the required secondary sample support as well.

The parametric approach is based on the observation that in (20.14), as δ → 0, we have

lim
δ→0

(
R̂e0 + δI

)−1∝
(

I − �
(
�H �

)−1
�H

)
. (20.16)

Thus, the effect of R−1
e0

is to approximately project the space-time signal vector onto the space orthogonal
to the clutter and jamming. While � could be used to define this subspace, a more efficient approach has
been proposed based on vector autoregressive (VAR) filtering. To see this, note from (20.3) and (20.7)
that the clutter and jamming vector ek for range bin k over the full CPI can be partitioned into samples
for each individual pulse within the CPI:

ek =

⎡⎢⎢⎢⎣
nk(1)
nk(2)
...

nk(K )

⎤⎥⎥⎥⎦ . (20.17)

The VAR approach assumes that the clutter and jamming obey the following model for each pulse t:

H0nk(t)+ H1nk(t − 1)+ · · · + HLnk(t − L + 1) = 0, (20.18)

where L is typically assumed to be small (e.g., less than 5–7) and each matrix Hi is M ′ × M for some
chosen value of M ′. The matrix coefficients of the VAR can be estimated for example by solving a
standard least-squares problem of the form

min
H

Ns∑
k=1

‖Hek‖2 s.t. HH H = I, (20.19)

where

H =

⎡⎢⎢⎢⎣
HL HL−1 · · · H0

HL HL−1 · · · H0
. . .

. . .

HL HL−1 · · · H0

⎤⎥⎥⎥⎦ (20.20)

and the constraint HH H = I is used to prevent a trivial solution. The matrix HH will approximately
span the subspace orthogonal to �, and based on (20.16) a suitable space-time filter would be given by

w = PHH s(θ, φ, ω), (20.21)

where

PHH = HH
(
HHH

)−1H. (20.22)
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FIGURE 20.8

Angle-Doppler spectra after STAP filtering.

This approach is referred to as the space-time autoregressive (STAR) filter. An example of the perfor-
mance of the STAR filter is given in Figure 20.8 for a case with L = 4 and Ns = 7. These results are
for the same data set that generated the unfiltered angle-Doppler spectrum in Figure 20.4. Note that the
clutter and jamming have been removed, and the target is plainly visible. Similar results were obtained in
this case with the fully adaptive STAP method with diagonal loading, but required a value of Ns near 60.

3.20.2.2 MIMO radar
Multi-input multi-output (MIMO) radar is beginning to attract a significant amount of attention from
researchers and practitioners alike due to its potential of advancing the state-of-the-art of modern radar.
Unlike a standard phased-array radar, which transmits scaled versions of a single waveform, a MIMO
radar system can transmit via its antennas multiple probing signals that may be chosen quite freely
(see Figure 20.9). This waveform diversity enables superior capabilities compared with a standard
phased-array radar. For example, the angular diversity offered by widely separated transmit/receive
antenna elements can be exploited for enhanced target detection performance. For collocated transmit
and receive antennas, the MIMO radar paradigm has been shown to offer many advantages including
long virtual array aperture sizes and the ability to untangle multiple paths. Array signal processing plays
critical roles in reaping the benefits afforded by the MIMO radar systems. In our discussion here, we
focus on array signal processing for MIMO radar with collocated transmit and receive antennas.
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FIGURE 20.9

(a) MIMO radar and (b) phased-array radar.

An example of a UAV equipped with a MIMO radar system is shown in Figure 20.10, where the
transmit array is sparse and the receive array is a filled (half-wavelength inter-element spacing) uniform
linear array. When the transmit antennas transmit orthogonal waveforms, the virtual array of the radar
system is a filled array with an aperture up to M times that of the receive array, where M is the number of
transmit antennas. Many advantages of MIMO radar with collocated antennas result directly from this
significantly increased virtual aperture size. For example, for small aerial vehicles (with medium or short
range applications), a conventional phased-array system could be problematic since it usually weighs
too much, consumes too much power, takes up too much space, and is too expensive. In contrast, MIMO
radar offers the advantages of reduced complexity, power consumption, weight and cost by obviating
phase shifts and affording significantly increased virtual aperture size.

Some typical examples of array processing in MIMO radar include transmit beampattern synthesis,
transmit and receive array design, and adaptive array processing for diverse MIMO radar applications.
We briefly describe these array processing examples in MIMO radar.

3.20.2.2.1 Flexible transmit beampattern synthesis
The probing waveforms transmitted by a MIMO radar system can be designed to approximate a desired
transmit beampattern and also to minimize the cross-correlation of the signals reflected from various
targets of interest—an operation that would hardly be possible for a phased-array radar.

The recently proposed techniques for transmit narrowband beampattern design have focused on the
optimization of the covariance matrix R of the waveforms. Instead of designing R, we might think of
directly designing the probing signals by optimizing a given performance measure with respect to the
matrix X of the signal waveforms. However, compared with optimizing the same performance measure
with respect to the covariance matrix R of the transmitted waveforms, optimizing directly with respect to
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FIGURE 20.10

A UAV equipped with a MIMO radar.

X is a more complicated problem. This is so because X has more unknowns than R and the dependence
of various performance measures on X is more intricate than the dependence on R.

There are several recent methods that can be used to efficiently compute an optimal covariance
matrix R, with respect to several performance metrics. One of the metrics consists of choosing R, under
a uniform elemental power constraint (i.e., under the constraint that the diagonal elements of R are
equal), to achieve the following goals:

a. Maximize the total spatial power at a number of given target locations, or more generally, match a
desired transmit beampattern.

b. Minimize the cross-correlation between the probing signals at a number of given target locations.

Another beampattern design problem is to choose R, under the uniform elemental power constraint, to
achieve the following goals:

a. Minimize the sidelobe level in a prescribed region.
b. Achieve a predetermined 3 dB main-beam width.
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It can be shown that both design problems can be efficiently solved in polynomial time as a semi-definite
quadratic program (SQP).

We comment in passing on the conventional phased-array beampattern design problem in which only
the array weight vector can be adjusted and therefore all antennas transmit the same differently-scaled
waveform. We can readily modify the MIMO beampattern designs for the case of phased-arrays by
adding the constraint that the rank of R is one. However, due to the rank-one constraint, both of these orig-
inally convex optimization problems become non-convex. The lack of convexity makes the rank-one con-
strained problems much harder to solve than the original convex optimization problems. Semi-definite
relaxation (SDR) is often used to obtain approximate solutions to such rank-constrained optimization
problems. The SDR is obtained by omitting the rank constraint. Hence, interestingly, the MIMO beam-
pattern design problems are the SDRs of the corresponding phased-array beampattern design problems.

We now provide a numerical example below, where we have used a Newton-like algorithm to solve
the rank-one constrained design problems for phased-arrays. This algorithm uses SDR to obtain an
initial solution, which is the exact solution to the corresponding MIMO beampattern design problem.
Although the convergence of the said Newton-like algorithm is not guaranteed, we did not encounter
any apparent problem in our numerical simulations.

Consider the beampattern design problem with M = 10 transmit antennas. The main-beam is
centered at θ0 = 0◦, with a 3 dB width equal to 20◦ (θ1 = −10◦, θ2 = 10◦). The sidelobe region
is � = [−90◦,−20◦] ∪ [20◦, 90◦]. The minimum-sidelobe beampattern design is shown in Figure
20.11a. Note that the peak sidelobe level achieved by the MIMO design is approximately 18 dB below
the mainlobe peak level. Figure 20.11b shows the corresponding phased-array beampattern obtained
by using the additional constraint rank(R) = 1. The phased-array design fails to provide a proper
mainlobe (it suffers from peak splitting) and its peak sidelobe level is much higher than that of its
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FIGURE 20.11

Minimum sidelobe beampattern designs, under the uniform elemental power constraint, when the 3 dB
main-beam width is 20◦. (a) MIMO and (b) phased-array.
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MIMO counterpart. We note that, under the uniform elemental power constraint, the number of degrees
of freedom (DOF) of the phased-array that can be used for beampattern design is equal to only M − 1;
consequently, it is difficult for the phased-array to synthesize a proper beampattern. The MIMO design,
on the other hand, can be used to achieve a much better beampattern due to its much larger number of
DOF, viz. M2 − M .

The radar waveforms are generally desired to possess constant modulus and excellent auto- and
cross-correlation properties. Consequently, the probing waveforms can be synthesized in two stages: at
the first stage, the covariance matrix R of the transmitted waveforms is optimized, and at the second
stage, a signal waveform matrix X is determined whose covariance matrix is equal or close to the
optimal R, and which also satisfies some practically motivated constraints (such as constant modulus
or low peak-to-average-power ratio (PAR) constraints). A cyclic algorithm for example, can be used
for the synthesis of such an X, where the synthesized waveforms are required to have good auto- and
cross-correlation properties in time.

3.20.2.2.2 Array design
For a phased-array radar system, the transmission of coherent waveforms allows for a narrow mainbeam
and, thus, a high signal-to-noise ratio (SNR) upon reception. When the locations of targets in a scene
are unknown, phase shifts can be applied to the transmitting antennas to steer the focal beam across
an angular region of interest. In contrast, MIMO radar systems, by transmitting different, possibly
orthogonal waveforms, can be used to illuminate an extended angular region over a single processing
interval, as we have demonstrated above.

Waveform diversity permits higher degrees of freedom, which enables the MIMO radar system to
achieve increased flexibility for transmit beampattern design. The assumptions used in the discussions
above are that the positions of the transmitting antennas, which also affect the shape of the beampattern,
are fixed prior to the construction of R followed by the synthesis of X. At the receiver, sparse, or thinned,
array design has been the subject of an abundance of literature during the last 50 years. The purpose
of sparse array design has been to reduce the number of antennas (and thus reduce the cost) needed to
produce desirable spatial receiving beampatterns. The ideas behind sparse receive array methodologies
can be extended to that of sparse, MIMO array design. For example, cyclic algorithms can be used to
approximate desired transmit and receive beampatterns via the design of sparse antenna arrays. These
algorithms can be seen as extensions to iterative receive beampattern designs.

3.20.2.2.3 Adaptive array processing at radar receivers
Adaptive array processing plays a vital role at radar receivers, including those of MIMO radar. Conven-
tional data-independent algorithms, such as the delay-and-sum approach for array processing, suffer
from poor resolution and high sidelobe level problems. Data-adaptive algorithms, such as MVDR
(Capon) receivers, have been widely used in radar receivers. These adaptive signal processing algo-
rithms offer much higher resolution and lower sidelobe levels than the data-independent approaches.
However, these algorithms can be sensitive to steering vector errors and also require a substantial
number of snapshots to determine the second-order statistics (covariance matrices). To mitigate these
problems, diagonal loading has been used extensively in practical applications to make adaptive algo-
rithms feasible. However, too much diagonal loading makes the adaptive algorithm degenerate into
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data-independent methods, and the diagonal loading level may be hard to determine in practice.
Parametric methods tend to be sensitive to data model errors and are not as widely used as the afore-
mentioned data-adaptive algorithms.

In MIMO radar, adaptive array processing is essential, especially because many of the simple tricks
used to achieve the longer virtual arrays, such as randomized antenna switching (also called randomized
time-division multiple access (R-TDMA)) and slow-time code-division multiple access (ST-CDMA),
provide sparse random sampling. Because of such sampling, the high sidelobe level problem suffered by
data-independent approaches are exacerbated. Moreover, most of the radar signal processing problems
encountered in practice do not have multiple snapshots. In fact, in most practical applications, only a
single data measurement snapshot is available for adaptive signal processing. For example, in synthetic
aperture radar (SAR) imaging, just a single phase history matrix is available for SAR image formation.
Moreover the phase history matrix may not be uniformly sampled. In MIMO radar applications, includ-
ing MIMO-radar-based space-time adaptive processing (STAP), synergistic MIMO SAR imaging and
ground moving target indication (GMTI), and untangling multiple paths for diverse radar operations
such as those encountered by MIMO over-the-horizon radar (OTHR), we essentially have just a single
snapshot available at the radar receiver, especially in a heterogeneous clutter environment.

Fortunately, the recent advent of iterative adaptive algorithms, such as the iterative adaptive approach
(IAA) and sparse learning via iterative minimization (SLIM), obviate the need of multiple snapshots and
the uniform sampling requirements but retain desirable properties, including high resolution, low side-
lobe level, and robustness against data model errors, of the conventional adaptive array processing meth-
ods. Moreover, for uniformly sampled data, various fast implementation strategies of these algorithms
have been devised to exploit the Toeplitz matrix structures. These iterative adaptive algorithms are partic-
ularly suited for signal processing at radar receivers. They can also be used in diverse other applications,
such as in sonar, radio astronomy, and channel estimation for underwater acoustic communications.

3.20.3 Radio astronomy
Radio astronomy is the study of our universe by passive observation of extra-terrestrial radio frequency
emissions. Sources of interest for astronomers include (among others) radio galaxies, pulsars, supernova
remnants, synchrotron radiation from excited material in a star’s magnetic field, ejection jets from black
holes, narrowband emission and absorption lines from diffuse elemental or chemical compound matter
that can be assayed by their characteristic spectral structure, and continuum thermal black body radiation
emitted by objects ranging from stars to interstellar dust and gasses. The radio universe provides quite
a different and complementary view to that which is visible to more familiar optical telescopes. Radio
astronomy has enabled a much fuller understanding of the structure of our universe than would have
been possible with visible light alone. With Doppler red shifting, the spectrum of interest ranges from
as low as the shortwave regime near 10 MHz, to well over 100 GHz in the millimeter and submillimeter
bands, and there are radio telescopes either in use or under development to cover much of this spectrum.

From the earliest days of radio astronomy, detecting faint deep space sources has pushed available
technology to extreme performance limits. Early progress was driven by improvements in hardware
with relatively straightforward signal processing and detection techniques. With the advent of large
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synthesis arrays, signal processing algorithms increased in sophistication. More recently, interest in
phased array feeds (PAFs) has opened a new frontier for array signal processing algorithm development
for radio astronomical observations.

Radio astronomy presents unique challenges as compared to typical applications in communications,
radar, sonar, or remote sensing:

• Low SNR: Deep space signals are extremely faint. SNRs of −30 to −50 dB are routine.
• Radiometric detection: A basic observational mode in radio astronomy is “on-source minus off-

source” radiometric detection where the source level is well below the noise floor and can only be
seen by differencing with a noise only estimate. This requires stable power estimates of (i) system
noise plus weak signal of interest (SOI) and (ii) noise power alone with the sensor steered off the
SOI. The standard deviation of the noise power estimate determines the minimum detectable signal
level, so that long integration times (minutes to hours) are required.

• Low system temperatures: With cryogenically cooled first stage low noise amplifiers, system noise
temperatures can be as low as 15 K at L-band, including LNA noise, waveguide ohmic losses,
downstream receiver noise, and spillover noise from warm ground observed beyond the rim of a
dish reflector.

• Stability: System gain fluctuations increase the receiver output variance and place a limit on achiev-
able sensitivity that cannot be overcome with increased integration time. High stability in gain,
phase, noise, and beamshape response over hours is required to enable long term integrations to
tease out detection of the weakest sources.

• Bandwidth: Some scientific observations require broad bandwidths of an octave or more. Digital
processing over such large bandwidths poses serious computational burdens.

• Radio frequency interference (RFI): Observations in RFI environments outside protected frequency
bands are common. Interference levels below the noise floor may be as problematic as strong interfer-
ers, since they are hard to identify and attenuate. Cancelation approaches also cause pattern rumble
which limits sensitivity.

3.20.3.1 Synthesis imaging
Radio astronomical synthesis imaging uses interferometric techniques and some of the world’s largest
sensor arrays to form high resolution images of the distribution of radio sources in deep space.
Figure 20.12 presents two examples of the beautiful high resolution detail revealed by synthesis imaging
from the Very Large Array (VLA) in New Mexico, and Figure 20.13 shows the VLA with its anten-
nas configured in a compact central core configuration. The key to this technology is coherent cross-
correlation processing (i.e., interferometry) of RF signals seen by pairs of widely separated antennas
(up to 10s of kilometers and more). Each such antenna typically consists of a high gain dish reflector of
12–45 m diameter which serves as a single element in the larger array. At lower frequencies, in order
to avoid difficulties of physically steering the large aperture needed for high gain, array elements may
themselves be built up as electronically steered beamforming aperture array “stations” using clusters of
fixed bare antennas without a reflector (for example, the LOFAR array). Whether implemented with a
collection of large dish telescopes, or with a beamforming array, these elements of the full imaging array
provide a sparse spatial sampling of the wavefront that would have been observed by a much larger,
imaginary “synthetic” encompassing dish. Though the array cannot match the collecting areas of the
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FIGURE 20.12

VLA images of radio sources not visible to optical astronomy. (a) An early image of the gas jet structures in
Cygnus A (ejected from the spinning core of the radio galaxy in the constellation Cygnus) seen at 5.0 GHz
1983 by Perley, Carilli, and Dreher. (b) Supernova remnant Cassiopeia A, 1994 composite of 1.4, 4.0, and
8.4 GHz images, by Rudnick, Delaney, Keohane, Koralesky, and Rector.

Credits: National Radio Astronomy Observatory/Associated Universities, Inc./National Science Foundation.

FIGURE 20.13

The central core of the Very Large Array (VLA) in compact configuration.
Credit: Dave Finely, National Radio Astronomy Observatory/Associated Universities, Inc./National Science Foundation.

synthesized aperture, the long “baseline” distances between antennas yield spatial imaging resolution
comparable to that of the encompassing dish aperture which inscribes the baseline vectors. Exploiting
the earth’s rotation over time relative to the distant celestial sky patch being observed fills in sampling
gaps between sparse array elements.

There are a number of aspects of synthesis imaging arrays that are distinct from many other
array signal processing applications. Due to wide separation there is no mutual coupling and noise
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is truly independent across the array. The large scale, long baselines, and critical dependence on phase
relationships require very long coherent signal transport or precision time stamping of data sets using
atomic clock references. Each array element is itself a high gain, highly directive antenna with a sizable
aperture. Precision array calibration is required, but due to large scale hardware this cannot be done in a
laboratory or on an antenna range. Self calibration methods are employed that use known point-source
deep space objects in the field of view to properly phase the array. Array geometry is sparse with either
random-like or log-scaled spacing. Extreme stability is required due to the need for coherent integration
over hours, and bandwidths of interest can cover and octave or more.

3.20.3.1.1 The imaging equation
While the signals of interest are broadband, processing typically takes place in frequency subchannels
so that narrowband models can typically be used. Further, since deep space sources are typically seen
through line-of-sight propagation, multipath scattering is limited and occurs only locally as reflections
off antenna support structures. Thus the propagation channel can be considered to be memoryless (zero
delay spread). The synthesis imaging equations relate the observed cross correlation between pairs of
array elements to the expected electromagnetic source intensity spatial distribution over a patch of the
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FIGURE 20.14

Geometry and signal definitions for the synthesis imaging equations.
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celestial sphere. Figure 20.14 illustrates the geometry, signal definitions, and coordinate systems for
one of the baseline pairs of antennas used to develop the imaging equations.

Consider the electric field E(s, t) = E(s)e j�t observed by the array at frequency � due to a
narrowband plane wave signal arriving from the direction pointed to by the unit length 3-space vector
s. We consider only the quasi monochromatic case where a single radiation frequency� is observed by
subband processing. To simplify discussion, polarization effects are not considered so E(s) is treated
as a scalar rather than vector quantity, though working synthesis arrays typically have dual polarized
antennas and receiver systems to permit studying source polarization. Since distance is indeterminate to
the array, in our model the observed E(s) and its corresponding intensity distribution I (s) = E

[|E(s)|2]
are projected without time or phase shifting onto a hypothetical far-field celestial sphere that is interior
to the nearest observed object. The goal of synthesis imaging is to estimate I (s) from observations of
sensor array y(t).

Define the image coordinate axes (p, q) to be fixed on the celestial sphere and centered in the
imaging field of view patch. Since s is unit length, we may use these coordinates to express it as

s =
(

p, q,
√

1 − p2 − q2
)

. Let s0 point to the (p = 0, q = 0) origin, thus s0 = (0, 0, 1). For small

values of p and q, such as being contained within a field-of-view limited by the narrow beamwidth of
array antennas, s ≈ (p, q, 1). Time delays Tm are inserted in the signal paths for receiver outputs ym(t)
to compensate for the differential propagation times of a plane wave originating from the (p, q) origin.
The most distant antenna is arbitrarily designated as the m = 1st element, and T1 = 0. Thus the array
is co-phased for a signal propagating along s0.

Receiver output voltage signal ym(t), 1 ≤ m ≤ M , is given by the superposition of scaled electric
field contributions from across the full celestial sphere surface S, plus local sensor noise:

ym(t) =
∫

S
A(s)E(s)e j

(
�t+φm(s)

)
ds + nm(t), (20.23)

where A(s) represents the known antenna element directivity pattern and downstream receiver gain
terms, φm(s) is the phase shift due to differential geometric propagation distances for a source from
s relative to a co-phased source from s0 as shown in Figure 20.14, and nm(t) is the noise seen in the
mth array element. For simple imaging algorithms, it is assumed that all elements (e.g., dish antennas)
have identical spatial response patterns and that each is steered mechanically or electronically to align
its beam mainlobe with s0, so A(s) does not depend on m and sources outside the elemental beams are
strongly attenuated. The beamwidth defined by A(s) determines the maximum imaging field of view,
or patch size. Considering the full array, (20.23) can be expressed in vector form as:

y(t) =
∫

S
A(s)E(s)e j(�t+φ(s))ds + n(t) (20.24)

where φ(s) = [φ1(s) · · · φM (s)]T .
Consider the vector distance between two array elements, (rl −rm), l 
= m, where rm is the location of

the mth antenna. This is known as an interferometric “baseline,” and it plays a critical role in synthesis
imaging. Longer baselines yield higher resolution images by increasing the synthetic array aperture
diameter, and using more antennas provides more distinct baseline vectors which will be shown to
more fully sample the image in the angular spectrum domain. In the following all functions of element
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position depend only on such vector differences, so it is convenient to define a relative coordinate system
(u, v, w) in the vicinity of the array to express the difference as (rl − rm) = (u, v, w). Align (u, v)
with (p, q), and w with s0. Scale these axes so distance is measured in wavelengths, i.e., so that a unit
distance corresponds to one wavelength λ = 2πc

�
, where c is the speed of light. In this coordinate system

we have by simple geometry

φm(s)+ Tm� = −2πs(rm − r1), and Tm� = −2π s0(rm − r1). (20.25)

At array outputs ym(t), after the inserted delays Tm , the effective phase difference between two array
elements is then

φl(s)− φm(s) = −2π(s − s0)
T (rl − rm). (20.26)

Using the signal models of (20.23) and (20.26), the cross correlation of two antenna signals as a
function of their positions is given by:

R(rl , rm) = E
[
yl(t)y

∗
m(t)

]
for l 
= m (20.27)

= E

[(∫
S

A(s)E(s)e j(�t+φl (s))ds + nl(t)

)
×
(∫

S
A(s′)E(s′)e j(�t+φm(s′))ds′ + nm(t)

)∗]
(20.28)

=
∫

S
|A(s)|2 I (s)e− j2π(s−s0)

T (rl−rm )ds

=
∫

S
|A(s)|2 I (s)e− j2π(p,q,a−1)T (u,v,w)ds (20.29)

=
∫∫ ∞

−∞
|A(p, q)|2 1

a
I (p, q)e− j2π(up+vq+w(a−1))dp dq (20.30)

≈
∫∫ ∞

−∞
|A(p, q)|2 I (p, q)e− j2π(up+vq)dp dq = R(u, v) for u, v 
= 0, (20.31)

where a = √
1 − p2 − q2. We have assumed zero mean spatially independent radiators for E(s) and

nm(t), a narrow field of view so a ≈ 1, and that s0 = (0, 0, 1). The quantity R(u, v) is known by radio
astronomers as a “visibility function” where arguments rl and rm are replaced by u and v since the
final expression depends only on these terms. A cursory inspection of (20.31) reveals that it is precisely
a 2-D Fourier transform relationship, so the inversion method to obtain I (s) from visibilities R(u, v)
suggests itself:

I (p, q) = 1

|A(p, q)|2
∫∫ ∞

−∞
R(u, v)e j2π(up+vq)du dv, ∀{(p, q)|A(p, q) � 0} (20.32)

= 1

|A(p, q)|2 F−1(R(u, v)), (20.33)

where F−1(·) is the inverse 2-D Fourier transform. This is the well known synthesis imaging equation.
Since only cross correlations between distinct antennas are measured by this imaging interferometer,
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the self power terms R(rl , rm)|rl=rm = R(0, 0) are not computed or used in the Fourier inverse. The
d.c. level in the image which normally depends on these terms must rather be adjusted to provide a
black, zero valued background.

3.20.3.1.2 Algorithms for solving the imaging equation
The geometry of the imaging problem described in (20.32) and illustrated in Figure 20.14 is continually
changing due to Earth rotation. The fixed ground antenna positions rm rotate relative to the (u, v) axis,
which remains aligned to the (p, q) axis fixed on the celestial sphere. On one hand, this is a negative effect
because it limits the integration time that can be used to estimate R(u, v) under a stationarity assumption.
On the other hand, rotation produces new baseline vectors (rl − rm) with distinct orientations, filling
in the Fourier space coverage for R(u, v) and improving image quality. To exploit rotation, imaging
observations are made over long time periods, up to 12 h, to form a single image.

Receiver outputs are sampled as y(i) ≡ y(iTs) at frequency fs = 1/Ts , and sample covariance
estimates of the visibility function (assuming zero mean signals) are obtained as

R̂k = 1

N

(k+1)N−1∑
i=k N

y(i)yH (i), (20.34)

where N is the number of samples in the long term integration (LTI) window over which the imaging
geometry and thus cross correlations may be assumed to be approximately stationary, and k is the
LTI index. (We will later introduce a short term integration window length Nsti over which moving
interference sources appear statistically stationary.)

Since covariance estimates are only available at discrete time intervals (one per LTI index k), and
the antennas have fixed Earth positions, only samples of R(u, v) are available with irregular spacing in
the (u, v) plane, so (20.32) must be solved with discreet approximations. However, noting that due to
Earth rotation, the corresponding antenna position vector orientations rm depend on time through k, a
new set of (u, v) samples with different locations is available at each LTI. Index k is thus added to the
notation to distinguish distinct baseline vectors (rk,l − rk,m) for the same antenna pairs during different
LTIs. So the (l, m)th element of R̂k relates to the sampled visibility function as

{R̂k}lm = R̂k,lm ≈ R(uk,lm, vk,lm), (20.35)

where (uk,lm, vk,lm, wk,lm) = (rk,l − rk,m) and where as in (20.26) and (20.31), due to inserted time
delays Tm we may takewk,lm to be zero. For simplicity we will use a single index κ to represent unique
LTI-antenna index triples {k, lm} to specify vector samples in the (u, v) plane, so (uk,lm, vk,lm) =
(uκ , vκ) and R̂k,lm = R̂κ . Thus elements of the sequence of matrices R̂k provide a non-uniformly
sampled representation of the visibility function, or frequency domain image. Consistent with the
treatment of R(0, 0) in (20.32), diagonal elements in R̂κ are set to zero.

Figure 20.15a presents an example of a certain VLA geometry, and Figure 20.15b shows where
the (uκ , vκ) samples would lie, with each point representing a unique sample κ . This plot includes 61
LTIs (i.e., 0 ≤ k ≤ 60) over a 12 h VLA observation for the Cygnus A radio galaxy of Figure 20.12a.
This sample pattern would change for sources with different positions on the celestial sphere (expressed
by astronomers in right ascension and declination).
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FIGURE 20.15

(a) An example VLA antenna element geometry with the repositionable 25 m dishes in a compact log spacing
along the arms. Axis units are in kilometers. (b) Corresponding (u, v ) sample grid for a 12 h observation of
Cygnus A. Each point represents a (uκ , vκ ) sample corresponding to a unique baseline vector where a visibility
estimate R̂κ is available. Red crosses denote baselines from a single LTI midway through the observation,
and blue points are additional samples available using Earth rotation, with a new R̂k computed every 12 min.
Observation is at 1.61 GHz and axis units are in wavelengths. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this book.)
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With this frequency domain sampling and including noise effects (20.32) becomes

ÎD(p, q) = 1

|A(p, q)|2
∫∫ ∞

−∞

(u, v)

(
R(u, v)+ R̃(u, v)

)
e j2π(up+vq)du dv (20.36)

= 1

|A(p, q)|2
∑
κ

R̂κ e j2π(uκ p+vκq), (20.37)

where ÎD(p, q) is known as the “dirty image,” the sampling function
(u, v) = ∑
κδ(u − uκ , v− vκ),

and R̃(u, v) represents sample estimation error in the covariance/visibility. Since the (u, v) plane is
sparsely sampled,
(u, v) introduces a bias in the inverse which must be removed by deconvolution as
described below. This also means that (20.37) is not a true inverse Fourier transform due to the limited
set of basis functions used. It is referred to as the “direct Fourier inverse” solution.

There are two common approaches to solving (20.36) or (20.37) for ÎD(p, q) given a set of LTI
covariances R̂κ . The most straightforward though computationally intensive method is a brute force
evaluation of (20.37) given knowledge of the (uκ , vκ) sample locations (e.g., as in Figure 20.15).
Alternately, the efficiencies of a 2-D inverse FFT can be exploited if these samples and corresponding
visibilities R̂k are re-sampled on a uniform rectilinear grid in the (u, v) plane. “Cell averaging” assigns
the average of visibility samples contained in a local cell region to the new rectilinear grid point in the
middle of the cell. Other re-gridding methods based on higher order 2-D interpolation have also been used
successfully. When large fields of view are required, or array elements are not coplanar, then any of these
approaches based on (20.31) will not work and a solution to the more complete expression of (20.30)
must be found. Cornwell has developed the W-Projection method to address these conditions [27].

An alternate “parametric matrix” representation of (20.31) and (20.37) has been developed. This is
particularly convenient because it models the imaging system in a familiar array signal processing form
that lends itself readily to analysis, adaptive array processing and interference canceling, and opens
up additional options for solving the synthesis imaging and image restoration problems. Returning to
the indexing notation of (20.34), note that since (rl − rm) = (rl − r1) − (rm − r1) one may express
(uk,lm, vk,lm) as (uk,l1 − uk,m1, vk,l1 − vk,m1). Let J (p, q) = |A(p, q)|2 I (p, q) be the desired image
as scaled (i.e., vignetted) by the antenna beam pattern, and sample it on a regular 2-D grid of pixels
(pd , qd), 1 ≤ d ≤ D. The conventional visibility Eq. (20.31) then becomes

Rk,lm =
D∑

d=1

J (pd , qd)e
− j2π(uk,lm pd+vk,lmqd ) + σ 2

n δ(l − m) (20.38)

=
D∑

d=1

e− j2π(uk,l1 pd+vk,l1qd ) J (pd , qd)e
j2π(uk,m1 pd+vk,m1qd ) + σ 2

n δ(l − m), (20.39)

which in matrix form is

Rk = AkJAH
k + σ 2

n I, where (20.40)

Author’s personal copy



884 CHAPTER 20 Applications of Array Signal Processing

Ak = [ak,1, . . ., ak,D], (20.41)

ak,d =
[
e− j2π(uk,11 pd+vk,11qd ), . . ., e− j2π(uk,M1 pd+vk,M1qd )

]T
, (20.42)

and where J = Diag([J (p1, qD), . . ., J (pD, qD)]) is the diagonal image matrix representation of sam-
pled J (p, q), M is the total number of array elements, and though noise is independent across antennas,
the self noise terms have been included to allow for the l = m case that contributes to the diagonal of
full matrix Rk . The matrix discrete “direct Fourier inverse” relationship corresponding to (20.37) is

Ĵ = 1

K

K∑
k=1

AH
k RkAk, (20.43)

where K is the number of available LTIs. Equations (20.40) and (20.43) are well suited to address synthe-
sis imaging as an estimation problem, facilitating use of Maximum Likelihood, maximum a posteriori,
constrained minimum variance, or robust beamforming techniques. Note that (20.43) is not a complete
discrete inverse Fourier transform, indeed, often D > M K so a one-to-one inverse relationship between
Rk and J does not exist and Ĵ is significantly blurred.

By the Fourier convolution theorem, the effect of frequency sampling by 
(u, v) in (20.36) is
to convolve the desired image I (p, q) with the “dirty beam response” ψD(p, q) = F−1(
(u, v)).
Neglecting the effect of individual antenna directivity pattern A(p, q), ψD(p, q) can be interpreted as the
point spread function, or synthetic beam pattern of the imaging array for the given observation scenario.
Significant reduction of this blurring effect can be achieved by an image restoration/deconvolution step.
The dirty image of (20.36) may be expressed as

ÎD(p, q) = ψD(p, q) ∗ (I (p, q)+ Ĩ (p, q)), (20.44)

where Ĩ (p, q) = F−1(R̃(u, v)) is due to sample estimation error in the visibilities. Since antenna
locations in the rotating (u, v) plane are known precisely over the full observation, ψD(p, q) is known
to high accuracy, and with well calibrated dish antennas so is A(p, q). Thus (20.44) may be solved as

Î (p, q) = ÎD(p, q) ∗−1 ψD(p, q), (20.45)

where “∗−1” denotes deconvolution with respect to the right argument. Due to the spatial lowpass
nature of dirty beam ψD(p, q) this problem is ill conditioned and must be regularized by imposing
some assumptions about the image. The most popular reconstruction methods impose a sparse source
distribution model and use an iterative source subtraction approach related to the original CLEAN
algorithm [32]. The sparse model is justifiable for point-source images of star fields, and works well
even with more complex distributions of gas and nebular structures given that much of the field of view
is expected to be dark. Several variants and extensions to CLEAN have been proposed, some applying
source subtraction in the spatial (p, q) domain, and some in the frequency (u, v) domain. Typically
these have performance tuning parameters which astronomers adjust for most pleasing results. Thus the
effective regularization term or mathematical optimization expression is often not known precisely and
the process is a bit ad hoc, but solutions with higher contrast and resolution, and with reduced noise and
reconstruction artifacts are preferred. Maximum entropy reconstruction has also been used effectively.
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3.20.3.2 Astronomical phased array feeds
A new application for array signal processing in radio astronomy is phased array feeds (PAFs) where the
traditional single large horn antenna feed at the focus of large telescope dish is replaced with a closely
spaced (order of 1/2 wavelength) 2-D planar array of small antennas located at the dish focal plane. The
primary motivation for such a system, as shown in Figure 20.16 is to form multiple simultaneous beams
steered to cover a grid pattern in a field of view that is many times larger than the single pixel horn fed
dish. PAFs are ideal for wide-field and survey instruments where it is desired to cover large regions of
the sky in the shortest possible time. They provide the ability to capture a small image over the field of
view, with one pixel per simultaneously formed beam, using a single snapshot pointing of the dish. Such
systems have been referred to as “radio cameras.” Additional advantages of PAFs include sensitivity
optimization with respect to the noise environment, and spatial interference cancelation capabilities
(see Figure 20.16 and Section 3.20.3.3) albeit at the expense of increased hardware and processing
complexity.

In some ways PAF processing is simply conventional beamforming for an array of microwave
receiving antennas, but there are several unique aspects of the application that provide some challenges.

y(i)

s(i)

z(i)

Radio telescope dish with a phased array feed

FIGURE 20.16

The primary advantage of FPA telescopes is increased field of view provided by multiple, simultaneously
formed beams. Spatial cancelation of interfering signals is also possible, but very deep nulls are required.
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The following technical hurdles are why PAFs have not been previously adopted in radio astronomy,
but these issues have largely been resolved and working platforms have now been demonstrated.

First, the PAF is not a bare aperture array but operates in conjunction with a very large reflector which
for an on-axis far field point source focusses a tight Airy pattern spot of energy at the array that spans little
more than a single array element. For off-axis sources the spot moves across the array and undergoes
coma shaped pattern distortion. So, though noise and interference are seen on all elements, only a few
antennas see much of the SOI. The combined dish and PAF can be viewed as a dense array of small but
high gain, highly directive elements, but not all of these have equal SNR. Elements outside the focal spot
must however be used in beamforming to control the illumination pattern on the dish and thus reduce
spillover noise from observing warm ground beyond the edge of the dish. The focal properties of the dish
also limit the achievable field of view, even with electronic steering, since deviation from the boresight
axis beyond a few beamwidths leads to defocusing and loss of gain, no matter how large the PAF is.

Second, array calibration is critical to achieve maximum sensitivity (gain over noise power) and
due to the huge sizes of these instruments, must be performed in situ using known deep space objects
as calibration sources of opportunity. Calibrations must be performed periodically (order of weeks) to
account for electronic and structural drift, and must estimate array response vectors in every direction
that a beam is to be steered or a response constraint is to be placed.

Third, beamformer weight calculation is non-trivial. Astronomers want maximum sensitivity and
stable beampatterns on the sky, but these competing requirements are challenging. The variable corre-
lated noise field environment of a radio telescope calls for an adaptive approach, but it is difficult to
obtain low error array calibrations at enough points to control beam sidelobe structure. Also, due to
complexity of the antenna structures, it is impossible to design usable beamformer weights from even
a very detailed electromagnetic system simulation.

Fourth, as discussed in Section 3.20.3.3, many of the conventional adaptive canceling beamforming
methods are not very effective for astronomical PAFs. This is because observations are frequently done
when both the SOI and interference power levels are well below the noise floor. New approaches are
required to form deeper spatial nulls in scenarios where it is difficult to estimate interference parameters.

Fifth, replacing a single horn feed channel with 38, or 200 array elements, as have been proposed for
PAFs, has major implications on the back end processing. Processed bandwidths of 300 MHz or more
per antenna are needed, so a real-time DSP processor with capacity to serve as digital receiver, multiple
beamformer, and array correlator for calibrationm constitutes a major infrastructure investment.

And finally, in a field where cryogenically cooled antennas and LNAs are the norm to reduce receiver
noise, cooling a large array is daunting. Most current development projects have opted for room temper-
ature arrays and trade off the then necessary longer integration times with faster survey speeds possible
with multiple beams.

3.20.3.2.1 Signal model
After analog frequency down conversion, sampling, and complex baseband bandshifting, the array
signal time sample vector of Figure 20.16 is modeled as

y(i) = as(i)+
D∑

d=1

vd(i) zd(i)+ n(i), (20.46)
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where a is the array response vector for signal of interest (SOI) s(i), vd(i) is the time varying array
response for the dth independent interfering source zd(i), and n(i) is the noise vector. Source response
a is assumed to be constant, even for observation times on the order of an hour because the dish
mechanically tracks a point in the sky. Even fixed ground interference sources must be modeled as
moving (thus vd(i) depends on i) due to this tracking motion of the dish. Approaches to address man–
made interference are discussed in Section 3.20.3.3. This model for zd(i) can also include natural deep
space sources which are bright enough to overwhelm the SOI even when seen in the beam sidelobe
pattern. Their apparent rotational motion about the SOI is due to Earth rotation. When the corresponding
vd(i) is known accurately, these can be removed through a successive subtraction algorithm known as
peeling. As with synthesis imaging, broadband processing for PAFs is accomplished by FFT based
subband decomposition, often with thousands of frequency bins. So in the following we consider only
a single frequency channel and adopt the standard narrowband array processing model.

Any array signal processing, including beamforming, must take into account the fact that, unlike
synthesis imaging, the PAF noise vector n(i) is correlated across the array. Even with cryogenic cooling,
first stage amplifier LNA noise is correlated due to electromagnetic mutual coupling at the elements.
Another major component, spillover noise from warm ground black body radiation as seen by the feed
array, is spatially correlated because it is not isotropic since it stops above the horizon and is blocked
over a large solid angle by the dish.

In a practical PAF scenario the beams are steered in a rectangular or hexagonal grid pattern with
crossover points at the −1 to −3 dB levels. The total number of beams, J, is limited by the maximum
steering angle which is determined by the diameter of the array feed and the focal properties of the dish,
by the acceptable limit for beamshape distortion, and by the available processing capacity for real-time
simultaneous computation of multiple beams. As illustrated in Figure 20.17, the time series output for

+

w1

w3

wM

b(i) = w  y(i) H

θ

Space 
signal
of interest

Noise :

Interference

y  (i)1

y  (i)2

y  (i)M

n  (i)1

n  (i)M

s(i)

z  (i)1

FIGURE 20.17

Beamformer architecture. Narrowband operation is assumed and for PAF beamforming, interaction with the
large reflector dish is not shown.
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a beam steered in the jth direction is given by

b j (i) = wH
j y(i), (20.47)

where w j is the vector of complex weights for beamformer j, 1 ≤ j ≤ J . Weights are designed based
on array calibration data and the desired response pattern constraints and optimization as described in
the following two sections. Separate beamformers with their own sets of J distinct weight vectors are
computed for each frequency channel, though we consider only a single channel in this discussion.

3.20.3.2.2 Calibration
Since multiple simultaneous beams are formed with a PAF as shown in Figure 20.16, a calibration for
the signal array response vector a j must be performed for each direction, s j , corresponding to each
formed beam’s boresight direction, and any additional directions where point constraints in the beam
pattern response will be placed. Periodic re-calibration is necessary due to strict beam pattern stability
requirements, to correct for differential electronic phase and gain drift, and to characterize changes in
receiver noise temperatures. Calibration is based on sample array covariance estimates R̂ as described
in (20.34) while observing a dominant bright calibration point source in the sky. For example, in the
northern hemisphere, Cassiopeia A and Cygnus A shown in Figure 20.12 are the brightest continuum
(broadband) sources, and with a typical single dish telescope aperture they are unresolved and appear
as point sources. Both have been used as calibrators.

3.20.3.2.3 Beamformer calculation
Since discovery of the weakest, most distant sources is a primary aim of radio astronomers, it is
paramount to design a dish and feed combination to achieve high sensitivity, which has been derived
for a phased array feed to be

Ae

Tsys
= kb B

Fs

wH Rsw
wH Rnw

(m2/K), (20.48)

where Ae (in m2) represents directivity in terms of the effective antenna aperture collecting area, Tsys is
system noise power at the beamformer output expressed as a black body temperature, kb is Boltzmann’s
constant, B is system bandwidth, Fs, (in Watts/m2) is the signal flux density in one polarization, and
Rs and Rn are the signal and noise components of R respectively. Here we have assumed D = 0, i.e.,
that there are no interferers. For a reflector antenna with a traditional horn feed, maximizing sensitivity
involves a hardware-only tradeoff between aperture efficiency, which determines the received signal
power, and spillover efficiency, which determines the spillover noise contribution. With a PAF, sensitivity
is determined by the beamforming weights as well as the array and receivers. Adjusting w controls both
the PAF illumination pattern on the dish which affects Ae, and the response to the noise field, which
affects Tsys. Noting that all other right hand side terms in (20.48) are constant, sensitivity can be
maximized with the well known maximum signal to noise ratio (SNR) beamformer

wsnr = arg max
w

wH Rsw
wH Rnw

. (20.49)

To date all hardware demonstrated PAF telescopes have used this maximum sensitivity beamformer.
However, a hybrid beamformer design method for PAFs that parametrically trades off sensitivity max-
imization with constraining mainlobe shape and sidelobe levels has been proposed.
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FIGURE 20.18

(a) Cygnus X region at 1600 MHz. 5×5 mosaic of images using the 19-element prototype PAF on the Green
Bank 20-Meter Telescope. The circle indicates the half-power beamwidth. (b) Canadian Galactic Plane
Survey image [38] convolved to the 20-m effective beamwidth. The center of the map is approximately
20h44m,+42◦ (J2000) with north to the upper left.

Credit: Karl Warnick in [33].

3.20.3.2.4 Radio camera results
In 2008, ASTRON and BYU/NRAO independently demonstrated the first radio camera images with
a PAF fed dish. Figure 20.18 presents an example of the BYU work as a mosaic image of a com-
plex source distribution in the Cygnus X region. As a comparison, the right image is from the Cana-
dian Galactic Plane Survey image, but blurred by convolution with the equivalent beam pattern of the
20-Meter Telescope to match resolution scales. We expect that the image artifacts caused by discontinu-
ities at mosaic tile boundaries could be eliminated with more sophisticated processing. The Cygnus X
radio camera image contains approximately 3000 pixels. A more practical coarse grid spacing of about
half the HPBW would require about 600 pixels. A single horn feed would require 600 pointings (one
for each pixel) to form such an image, compared to 25 (one for each mosaic tile) for the radio camera.
Thus for equal integration times per pixel, this radio camera provides an imaging speed up of 24 times.

3.20.3.3 Interference mitigation for radio astronomy
From a regulatory and spectrum management point of view, radio astronomy is a passive wireless
service which must co-exist with many other licensed communications activities. Though international
treaties have long been established to protect a few important frequency bands for astronomical use only
(e.g., around 1420 MHz for emission lines of abundant deep space neutral Hydrogen) these precautions
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have become wholly inadequate. Astronomers’ current scientific goals require observing emissions
across the radio spectrum from molecules of more exotic gas compounds, from broad spectrum sources
such as pulsars, and from highly red shifted objects nearing the edge of the observable universe where
Doppler effects dramatically reduce the frequencies. Thus there is virtually no frequency band devoid
of interesting sources to study. Astronomers cannot rely solely on protected bands and must develop
methods to mitigate ubiquitous man-made radio transmission interference.

The problem is further exacerbated because one of the fundamental aims of radio astronomy is to
discover the weakest of sources which are often at signal levels many tens of decibels below the noise
floor. Successful detection usually requires long integration times on the order of hours to average out
noise induced sample estimation error variance, combined with on-source minus off-source subtraction
to find subtile differences in power levels between a noise-only background and noise plus SOI. Thus
even very weak interference levels that would hardly hinder wireless communications can completely
obscure an astronomical source of interest.

There is a long laundry list of troublesome RFI sources for radio astronomy. Examples of man-made
signals encountered at radio observatories for which mitigation strategies have been demonstrated
include: satellite downlink transmissions, radar systems, air navigation aids, wireless communications,
and digital television broadcasts. Even locating instruments in undeveloped areas with regulatory pro-
tection for radio quiet zones does not avoid many man-made sources such as satellite downlinks. Low
frequency synthesis arrays such as LOFAR, PAPER, LWA, and the Murchison Widefield Array oper-
ate in the heavily used VHF bands (30–300 MHz) to detect highly redshifted emissions, and as such
must contend with very powerful commercial TV and FM radio broadcasts, as well as two-way mobile
communications services.

There are a variety of RFI mitigation methods used in radio astronomy. The major approaches include
avoidance (simply wait until the interference stops or observe in a different frequency band), temporal
excision (blank out only the small percentage of data samples corrupted by impulsive interference),
waveform subtraction (estimate parameters for known structured interference and subtract a synthetic
copy of this signal from the data), anti-coincidence (remove local interference by retaining only signals
common to two distant observing stations), and spatial filtering (adaptive array processing to place
spatial nulls on interference). Since this present article emphasizes array signal processing, we will
address spatial filtering in the following discussion.

Figures 20.16 and 20.19 illustrate interference scenarios for a phased array feed and synthesis imaging
array respectively. For PAFs the closely packed antennas in the feed enable for the first time adaptive
spatial filtering on single dish telescopes. This would also be possible with PAFs on the multiple dishes
of a large imaging array, but even with just typical single horn feeds (as in Figure 20.19) the covariance
matrix used to compute imaging visibilities as in (20.34) and (20.40) can also be used for interference
canceling. Some proposed algorithms use only the main imaging array antennas, while others achieve
improved performance with additional smaller auxiliary antennas trained on the interferers as shown in
the figure. The various algorithm approaches will be discussed below. Most spatial filtering work to-date
has been at frequencies in L-band (1–2 GHz) and below because this includes important astronomical
sources and because of the abundance of man-made interference in these bands.
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FIGURE 20.19

An RFI scenario at a synthesis imaging array. Two independent interference sources are illustrated: a satellite
downlink and a ground-based broadcast transmitter. The main imaging array consists of typical single feed
dishes (i.e., PAF feeds are not used here). In addition to the main array, a subarray of smaller auxiliary anten-
nas is shown which can be used with some algorithms discussed below to improve cancelation performance.
If tracking information is available, these auxiliaries are steered to the offending sources to provide a high
INR copy of the interference.

3.20.3.3.1 Challenges and solutions to radio astronomical spatial filtering
Many of the well-known adaptive beamforming algorithms appear at first glance to be promising
candidates for interference mitigation in astronomical array processing, including maximum SNR,
minimum variance distortionless response (MVDR or Capon), linearly constrained minimum variance
(LCMV), generalized sidelobe canceler (GSC), Wiener filtering, and other algorithms. Robust canceling
beamformers which are less sensitive to calibration error have also been considered for aperture arrays
used as stations in large low frequency imaging arrays like LOFAR. However, due to several challenging
characteristics of the radio astronomical RFI problem, most of these approaches are less successful here
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than they would be in typical radar, sonar, wireless communications, or signal intercept applications.
These problems have made many astronomers reluctant to adopt the use of adaptive array processing
methods for regular scientific observations. We note though that the intrinsic motivations to observe in
RFI corrupted bands are becoming strong enough that rapid progress toward adoption is necessary and
is anticipated by most practitioners. New algorithm adaptations are being introduced which are better
suited for radio astronomical spatial filtering. We consider below some of the significant aspects of
radio astronomy that complicate spatial filtering.

The typical astronomical SOI power level is 30 dB or more below the system noise over comparable
bandwidth, even when cryogenically cooled LNAs are used with instruments located in radio quiet zones.
Canceling nulls must therefore be deep enough to drive interference below the SOI level, i.e., below the
on-source minus off-source detection limit, not just down to the system noise level. Most algorithms
require a dominant interferer to form deep nulls because minimum variance methods (MVDR, LCMV,
max SNR, Wiener Filtering, etc.) which balance noise variance with residual interference power cannot
drive a weaker interferer far below the noise floor. The residual will remain well above the SOI level.

Another promising solution to limited null depth is a zero forcing beamformer like subspace pro-
jection (SP) where the null in the estimated vector subspace for interference is theoretically infinitely
deep. A number of proposed radio astronomical RFI cancelers have adopted the SP approach and some
experimental demonstration results have appeared. Figure 20.20 illustrates the first use of subspace
projection RFI mitigation with a PAF as reported in [53]. Data were collected from a 19 element PAF
mounted on the 20-Meter Telescope at the NRAO Green Bank, West Virginia observatory while observ-
ing the deep space Hydroxl Ion (OH) maser radiation source designated in star catalog as “W3OH.” An
FM-modulated RFI source overlapping the W3OH spectral line at 1665 MHz was created artificially
using a signal generator. The RFI was removed using the subspace projection algorithm. Snapshot
radio camera images (see Section 3.20.3.2) of the source with and without RFI mitigation are shown in
Figure 20.20. The source which was completely obscured by interference is now clearly visible.

Typically interference subspace estimation is poor in SP and all other cancelers without a dominant
RFI signal so null depth suffers at lower INR levels. Short integration times, needed to avoid subspace
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FIGURE 20.20

W3OH image with and without RFI. The color scale is equivalent antenna temperature (K).
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smearing with moving interference, increase covariance sample estimation error which also limits null
depth. To address these issues, an SP canceler using auxiliary antennas as in Figure 20.19 and a new
parametric model-based SP approach for tracking low INR moving interferers have been proposed
which significantly improves null depth [50].

Adaptive beamformers must distort the desired quiescent (interference free) beam pattern in order to
place deep nulls on interferers. For astronomy, even modest beamshape distortions can be unacceptable.
A small pointing shift in mainlobe peak response, or coma in the beam mainlobe can corrupt sensitive
calibrated measurements of object brightness spatial distribution. Due to strict gain stability requirements
it has been preferable to lose some observation time and frequency bands to interference rather than
draw false scientific conclusions from corrupted on-sky beam patterns.

For PAF beamforming a potential solution is to use one of several classical constrained adaptive
beamformers. Due to the inherent tendency for off-axis steered beams with a parabolic dish reflector to
develop a mainlobe coma distortion, it would be necessary to employ several mainlobe point constraints
to maintain a consistent symmetric beampattern. It has also been demonstrated that without multiple
mainlobe constraints, RFI canceling nulls in the beampattern sidelobes can cause significant distortion
in the mainlobe.

A more subtle undesirable effect for both PAF and synthesis imaging arrays is that variations in
the effective sidelobe patterns due to moving RFI nulling can translate directly to an increase in the
minimum detectable signal level for the radiometer. Weak astronomical sources can only be observed by
integrating the received power for a long period to obtain separate low variance estimates of signal plus
noise power (on source), and noise only (off source). Both signal and noise (including leakage from other
deep space source through beam sidelobe patterns) must be stable to an extreme tolerance requirement
over the full integration time. Even small variations in the sidelobe structure can significantly perturb
background source and noise signal levels, causing intolerable time variation. This sidelobe pattern
rumble due to adaptive cancelation increases the “confusion limit” to detection since unstable noise and
background are not fully canceled in the on-source minus off-source subtraction. This occurs even if
the beam pattern mainlobe is held stable using constrained or robust beamformer techniques.

3.20.4 Positioning and navigation
The Global Positioning System (GPS) is the most widely adopted positioning system in the world. It is a
prominent example of what is known as Global Navigation Satellite Systems or GNSS, which represent
any system that provides position information to users equipped with appropriate receivers at any time
and anywhere around the globe based on signals transmitted from satellites. Currently there are two
operating GNSS: GPS (developed by the USA) and Glonass (developed by the former USSR and now by
Russia), while there are a number of systems under deployment, such as Galileo in Europe and Compass
in China. Despite the differences in the satellite constellation, signal parameters, etc., all of these systems
share the same operating principles and use similar types of signals. Therefore, while we will often refer
to the case of GPS, all of what we discuss here is also applicable to the other systems as well.

The GPS constellation is formed by approximately 30 satellites orbiting at a distance of about
26,560 km from earth’s center. Each satellite transmits several Direct-Sequence Spread-Spectrum
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(DS-SS) signals, and the main task of a GPS receiver is to measure the distances to the satellites
via the time delay of the signals. In applications requiring high-accuracy positions, the phase of the
received signal is also used as a source of information about the propagation delay of the signal. Once
the receiver has obtained these distances, it can compute its position by solving a geometrical problem.
Apart from the satellites themselves, the core of a GNSS is the ground segment that consists of a set of
ground stations monitoring the satellites and computing their positions.

Unlike communication receivers, where timing and phase synchronization are intermediary steps
to recovering the transmitted information, for positioning receivers it is the synchronization that is
the information. Significantly greater synchronization precision is required in a GNSS receiver than
in a communications system. As discussed below, the positioning accuracy of GNSS is degraded by
many effects. Multipath propagation and certain types of interference are very difficult to mitigate with
single-antenna receivers. Spatial processing has proven to be the most effective approach to combat
these sources of degradation, making it possible to obtain in some cases the same accuracy as in a
multipath- and interference-free scenario. The next two sections describe the error sources in GNSS,
with special emphasis on the multipath effects, and an appropriate signal model for spatial process-
ing. They serve as a justification of why the use of antenna arrays in the context of GNSS has been
receiving considerable attention since the mid-1990s. The rest of the sections discuss the advantages
and limitations of different approaches for exploiting the spatial degrees of freedom or spatial diversity
in satellite-based navigation systems.

3.20.4.1 Error sources and the benefits of antenna arrays in GNSS
The synchronization accuracy demanded by GPS receivers is very stringent, on the order of a few
nanoseconds, and exceeds by far the levels usually required in communications receivers. The difficulties
in achieving such ranging accuracy are due to the presence of different sources of error, which can be
categorized in three groups: (i) the errors due to the ground segment and the satellites, (ii) propagation-
induced errors, and (iii) local errors at the receiver. The first category includes the discrepancy between
the estimates of the satellite positions and clocks, which are computed by the ground segment and
broadcast by the satellites themselves, and the actual values. The second category corresponds to the
changes in the propagation delay, phase and amplitude of the signals caused by the atmosphere. Finally,
local errors refer to the effects of thermal noise, interference and multipath components.

The largest contributors to the total error budget are typically the ionospheric delay and local effects.
The size of the errors in the first category is progressively decreasing as the ground segment and satellites
are modernized. Moreover, one can also access alternative providers of more accurate satellite coordi-
nates and clocks. Another option is to use differential methods, where the user receiver makes use of
corrections computed by another receiver at a known position, or relative methods, where the position
relative to that second receiver is computed. The use of differential or relative methods virtually elimi-
nates the errors from the first category. These methods also help mitigate the propagation-induced errors.
Alternatively, the ionospheric delay can be essentially canceled using measurements at two or more
frequency bands. In short, the errors from the first two categories can typically be mitigated at the mea-
surement or system levels, and hence the local errors remain as the limiting factor in the ultimate accuracy
achievable with GNSS. This is the reason why it is of high interest to use signal processing techniques,
and in particular antenna array-based methods, to combat multipath and interference effects in GNSS.
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FIGURE 20.21

Environment with multipath propagation.

As in other systems, interference obviously affects the quality of time delay and phase estimates
in GNSS. On the other hand, the study of multipath effects requires a different treatment to the one
that is typically employed in wireless communications. While multipath components can be useful in
communications systems as a source of diversity or to increase the total received signal power, they are
always a source of error in navigation systems, and can lead to positioning inaccuracies reaching up to
many tens of meters. For the case of a satellite-based transmission, multipath is produced by objects that
are close to the receiver, as depicted in Figure 20.21. The only signal of interest in a navigation receiver
is the line-of-sight (LOS) signal, since it conveys information about the transmitter-receiver distance
through its time delay and phase information. While the multipath in a frequency-flat channel with zero
delay-spread theoretically arrives at the same time as the LOS, the resulting fading can lead to signal
drop-outs and poor localization performance. A second antenna (i.e., forming a small array) can be
used to overcome this difficulty. More challenging are multipath signals that arrive with non-zero delay
relative to the LOS, but still within 1–1.5 chip periods of the LOS (for civilian GPS, the chip period
is 1 µs, corresponding to about 300 m). Such signals are commonly referred to as coherent multipath,
and cause biases in the LOS signal time delay and carrier phase estimates. Signal replicas with delays
greater than about 1.5 chip periods can essentially be eliminated via the despreading process.

Narrowband or pulsed interference can be canceled in single antenna receivers using excision filters or
pulse blanking. Wideband non-pulsed interference cannot be combatted with time-domain processing,
but it is in principle an easy target for array processing. Harmful interference usually stands out clearly
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above the noise, and this makes its identification and subsequent nulling with a spatial filter relatively
easy. On the other hand, multipath mitigation is an extremely difficult task in single-antenna receivers
and also a difficult problem when using antenna arrays. In the single-antenna case where time-domain
methods must be used, the problem is ill-conditioned since one is attempting to estimate the parameters
of signal replicas that are very similar to each other. If a reflection and the LOS signal differ by a very
small delay (compared to the inverse of the signal bandwidth), they are almost identical and it is very
difficult to accurately measure the exact LOS signal delay. On the other hand, the spatial selectivity
offered by antenna arrays can be used to differentiate the LOS signal from multipath, since the multipath
will arrive from directions different from the LOS (it is very unlikely to have reflectors close to the
direct propagation path). The application of spatial processing for multipath mitigation is not without
difficulties. The main problem is that the LOS signal and the coherent multipath are strongly correlated,
which causes problems for many array processing techniques.

3.20.4.2 Signal model for positioning applications
The signal received by the antenna array can be written as

y(t) =
D∑

k=0

αkak x(t − τk)e
j2π fk t + n(t). (20.50)

In particular, in our problem the sources are not different signals, but delayed replicas of a single signal.
Each replica is shifted by a different Doppler frequency fk , and its complex amplitude isαk . The subindex
0 is reserved for the LOS signal, and this implies that τi > τ0,∀i . The term n(t) includes the thermal noise
and any (possibly directional) interference. The key parameters of interest for positioning applications
are τ0 and possibly the argument of α0 (i.e., ∠α0, which is the carrier phase of the LOS signal).

According to the discussion above, we assume that the delays of the replicas are in the range [τ0, τ0 +
1.5Tc], where Tc is the chip duration. Each replica may represent a single reflection or a cluster of
reflections with very similar delays. This leads to different possible parameterizations for the vectors
ak , as listed below:

1. an unstructured spatial signature (i.e., each ak is an arbitrary complex vector). In this case, there is
an inherent ambiguity between the definition of αk and ak , which can be simply avoided by defining
αkak as the overall spatial signature. One element of the spatial signature is identified as αk , and
hence the carrier phase of the LOS signal is given by the argument of that element of the spatial
signature.

2. a steering vector (or also referred to as structured spatial signature), which is a function of the DOA.

3. a weighted sum of steering vectors: ak = ∑Dk
l=1 αk,lak,l(θk,l , φk,l), where each term corresponds

to the amplitude and the steering vector of one of the reflections of the cluster. In this case, the
ambiguity between αk and ak can be handled in the same way as in the first model.

The signal x(t) may represent the GNSS signal itself or the signal after some processing. The
most common case of processing in our context is the despreading operation, which consists in cross-
correlating the received signal with a local replica of the pseudorandom or pseudonoise (PN) sequence.
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In this case, the variable t in the signals may be interpreted as the correlation lag. Unlike communications
receivers, a single correlation lag is not sufficient. A single correlation lag may be appropriate for data
detection but in a GNSS receiver, where the timing of the PN sequence has to be measured, several
correlation lags are required. The correlation of the incoming signal with the local sequence is usually
computed as a multiply-integrate-and-dump operation, which is carried out for each lag. However,
the despread signal, depicted in Figure 20.22, can also be interpreted as a portion of the output of
a matched filter. Figure 20.23 shows how the reception of multiple replicas affects the shape of the
despread signal, and it is clear from there that identifying the components that form the signal is a very
complicated task.

The choice of whether to base the computation of beamformers or other estimation methods on
the pre-despreading (pre-correlation) or post-despreading (post-correlation) signal has a crucial impact
on the performance and limitations of the array processing algorithms. GNSS signals typically have
a Carrier-Power-to-Noise-Spectral-Density (C/N0) of about 45 dB Hz. The chip rate and hence the
bandwidth is greater than 1 MHz, so this results in an SNR on the order of −15 dB or less. This means
that the GNSS signals and also their reflections are buried in the background noise. If one computes
the spatial correlation matrix Ryy = E{y(t)yH (t)} in a pre-correlation scheme, only the noise and
interference have a noticeable contribution to the matrix, so in practical terms the “total” correlation
matrix Ryy really only represents the noise-plus-interference correlation matrix.

The situation is completely different in the post-correlation scheme. The SNR of the correlation
maximum is equal to C/N0 times the duration of the local reference. The duration of PN sequences
in GNSS is several milliseconds, so the SNR of the maximum is typically on the order of several tens
of dBs. The average SNR of the signal depends on the length of the portion of the correlation around
the maximum that is taken as the observation window. This length is normally not too large, usually
only a few chips, so the average SNR stays at the level of tens of dBs. In this case, the post-correlation
matrix Ryy includes noticeable contributions from the LOS and reflected signals besides the noise and

y(t)

time

T T

2T
c 2T

c

2T c

Symbol 1

Symbol 2

Symbol 3

FIGURE 20.22

Qualitative example of the signal at one antenna after the despreading (parameter T is the symbol period:
20 ms in GPS C/A, and Tc is the chip duration: ∼1 µs in GPS C/A.)
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FIGURE 20.23

Qualitative example of the despreaded signal composed of the LOS component and two reflections. These
reflections are considered as coherent multipath because their contributions overlap with that of the LOS
component.

interference. To conclude, in order to make multipath visible in the spatial correlation matrix, one has
to work with the post-despreading correlation matrix. If one wants to hide multipath from the spatial
correlation matrix, the pre-despreading correlation matrix has to be used.

The location of the beamformer (if any) with respect to the despreader has an impact on computational
complexity, but it does not have an effect on performance since only its position within a set of linear
operations is changed. Note that we are referring here to the placement of the beamformer in the
receive chain, and not to the input data used for its computation, which is a totally different aspect as
explained above. Some examples of the placement of the beamformer as well as the input data used
for its computation are shown in Figures 20.24 and 20.25. Note that all combinations are in principle
possible, although some cases, such as pre-despreading beamforming with weights computed using
the post-despread signals, do not have a clear justification. As an example of a typical approach, the
beamforming vector is computed using the pre-despread correlation matrix as w = R−1

yy a0, and applied
to the despread signal to obtain z(t) = wH y(t). In the first formula, the symbol y refers to signals before
despreading, whereas in the second formula it refers to the despread signals.

3.20.4.3 Beamforming
The objective is to synthesize an array pattern that attenuates the reflections and interference. In the con-
text of GNSS, antenna-array beamformers are customarily referred to as CRPAs (Controlled Reception
Pattern Antennas). Adaptive (or data-dependent) beamforming is appropriate for situations where little
a priori information about the scenario is available, or when the scenario is likely to change with time.
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FIGURE 20.24

Example of a GNSS receiver using an antenna array where the beamformer is applied before despreading and
it is computed using the pre-despread signals. The output of the beamformer is processed by a conventional
GNSS receiver channel, as if it was the signal coming from a single antenna. Either option is possible: the
beamformer can be the same for all satellites, or different beamformers for different satellites can be used.
The complexity bottleneck is due to the fact that the beamformer weights are applied to high-rate samples
coming from the RF front-end.

This is the typical situation for user receivers. On the other hand, deterministic (or data-independent)
beamforming is more suitable for static and relatively controlled scenarios. This is typically the case
for ground reference stations. These reference stations refer to both the receivers that form part of
the ground segment of the GNSS (i.e., those receivers providing the measurements used to compute
the position of the satellites) and the user receivers that are static and typically used as references in
differential or relative positioning.

3.20.4.3.1 Adaptive beamforming
As outlined below, several different types of adaptive beamforming algorithms have been proposed for
GNSS. Some of these are adaptations of standard algorithms, others have been designed specifically
for conditions specific to positioning applications.
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FIGURE 20.25

Example of a GNSS receiver using an antenna array where the beamformer is applied after despreading. The
beamformer vector is calculated using the pre-despreading or the post-despreading spatial correlation matrix.
An optional spatial preprocessing block is included, which can be used to cancel some spatial sectors. The
number of outputs of the preprocessing block, M ′, is equal to or smaller than the number of antennas, M.
In this configuration, the application of the beamformer weights do not entail a significant computational
load because the correlation channels generate samples at a very low rate. Hence the fact that a different
beamformer is applied for each satellite is not a problem. Here the computational bottleneck comes from
the need to use a correlation channel at each antenna or at each output of the preprocessing block.

Algorithms employing a spatial reference: These approaches are based on knowledge of the steering
vector of the LOS signal, a0. Assuming this a priori information is reasonable in some GNSS applications
since the satellite position can be known thanks to the navigation message (transmitted by the satellite
itself) or to assistance from ground stations, and a rough estimate of the receiver position may be
available from previous position fixes or from the application of a basic positioning algorithm (e.g.,
using only one antenna and not exploiting the antenna array). Moreover, the accuracy of the satellite
and receiver positions is not important in determining the DOA of the signal; errors of several hundreds
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of meters can be tolerated without affecting the satellite DOA estimate, given that the satellite-receiver
distance is more than 20,000 km. However, the assumption of a known a0 relies on the availability of
array calibration and especially on the knowledge of the receiver orientation (also known as attitude in
the GNSS literature). Errors or uncertainty in the array response correspond to the standard calibration
problem found in many applications of antenna arrays, and robust methods developed for generic
applications are also applicable here. On the other hand, the need to know the receiver orientation is a
feature more specific to GNSS receivers. Assuming that a0 is known, the use of the MVDR beamformer
(and variants) is possible, and it is most appropriate to apply them in a pre-despreading scheme. If these
beamformers are computed with the post-despreading correlation matrix and multipath components are
present, they will suffer from the cancellation of the desired signal.

Algorithms employing a temporal reference: These methods are based on knowledge of the GNSS
signal waveform. Knowledge of the waveform can be exploited to design a beamformer that minimizes
the difference between its output and the reference signal (e.g., as in a Wiener filter). In practice, the
situation is not that straightforward because even though the shape of the signal is known, the delay
and frequency shift are not, so the beamformer weights and the signal parameters have to be computed
jointly or iteratively. The expression for the beamformer is

wT = R−1
yy ryx

(
τ̂0, f̂0

)
, (20.51)

where ryx (τ̂0, f̂0) is the cross-correlation between the array output and a local replica of the LOS signal
generated using estimates of its delay and frequency shift, τ̂0 and f̂0, respectively. In this case, it only
makes sense to work with correlations computed after the despreading, otherwise the contribution of
the GNSS signals is hardly present in the correlations. This beamformer is able to cancel interference,
but its performance in the presence of multipath is not satisfactory, although not as bad as with spatial-
reference beamformers. The temporal reference beamformer combines the multipath and the LOS signal
in a constructive manner, so as to increase the SNR. This is useful behavior in communications but not
in navigation systems, since the increase in SNR comes at the price of a bias in the estimation of the
delay and phase due to the presence of strong multipath at the beamformer output.

Hybrid beamformers: The opposite behavior of the spatial-reference and temporal-reference beam-
formers suggests that their combination may have good properties. Both of them provide the LOS signal
at the output, but the former changes the phase of the multipath so that it is roughly in counter-phase
with the LOS signal, whereas the later modifies the multipath phase to align it with that of the LOS
signal. Therefore, if the output of both beamformers is added together, the multipath will tend to cancel.
This observation has led to the proposal of a hybrid beamformer that can be expressed as

wH = βwT + γwS, (20.52)

where wS is a spatial-reference beamformer, and β and γ are two scalars weighting the contribution
of each beamformer. When wS is chosen as the MVDR beamformer, it can be shown that the optimal
weights are

β = α0,

γ = 1 − α0aH
0 R−1

yy ryx (τ0, f0). (20.53)
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Since the optimal weights depend on the unknown parameters to be estimated, a practical way to proceed
is to use an iterative algorithm where the calculation of the beamformer according to (20.52) is done
using the previous estimates of {α0, τ0, f0}, and next these estimates are updated using the output of
the just computed beamformer.

Blind algorithms: This class of methods refers to techniques that do not exploit a priori knowledge of
the exact signal or the steering vector, and hence are more robust to errors in these assumptions. Examples
of such methods include those based on the constant modulus (CM) assumption, cyclostationarity and
the power inversion approach. The civil GPS signal in current use, referred to as the C/A signal, has
constant modulus because it is formed by almost rectangular chips. Most other GNSS signals also
satisfy the CM property. However, this property cannot be exploited before despreading since the array
cannot provide enough SNR gain to bring the signal above the noise. Therefore, the CM beamformer
has to be applied after despreading, but in order to do so the despread samples corresponding to the LOS
signal have to be CM. This happens when only one sample per integration period is used. However, the
presence of multipath does not alter the constant-modulus property of the signal, so the CM beamformer
is not useful in combating multipath.

GNSS signals are obviously cyclostationary since the repeated use of the PN spreading sequence
introduces periodicity into the statistics of the signal. The fact that several repetitions of the PN code
are present during a bit time (a property sometimes referred to as self-coherence) can also be exploited,
as depicted in Figure 20.26. Interference will not have in general this structure, so it is possible to
design the beamformer by imposing that its output should be as similar as possible to a version of itself
delayed by a time equal to the PN code duration. Because of the same reasons as in the case of the
CM beamformer, this technique should be applied to the despread signals and it will only be effective
against interference and not multipath.

A very simple but rather effective approach is the power inversion beamformer. The weights are
obtained as the beamformer vector that minimizes the total output power subject to a simple constraint
to avoid the null solution. The constraint is chosen without using any information about the signal,
typically forcing a given beamformer coefficient to be equal to one. This method has to be applied
to the signals before despreading and, since the response is independent of the GNSS signals, it may
happen that some nulls of the reception pattern are near to the DOAs of some of the GNSS signals.
However, this situation can often be accepted since it is assumed that many GNSS satellites will be

1 ms

One bit period, 20 ms

PN code 
period

Acts as 
reference for

Acts as 
reference for

FIGURE 20.26

Structure of the GPS signal that allows to implement self-coherence restoration beamforming methods.
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visible (around 10 satellites), and if a few of them are lost due to the coincidence of the pattern nulls
with their DOAs, there will still be a sufficient number of satellite signals available (i.e., four or more)
to compute the position. In this method, all satellites are received through the same beamformer, so
it offers the possibility of being deployed as an add-onto existing single-antenna receivers. This is an
important advantage of this method; more sophisticated beamformers that require information provided
the receiver (e.g., the DOA or the delay of the LOS signal) or that generate one beam per satellite
cannot be coupled with existing single-antenna receivers and require the development of a completely
new receiver. The number of antennas used with power inversion should be large enough to cancel
the existing interference sources, but not much larger in order not to increase the number of nulls in
the pattern and thus the probability that a GNSS signal is canceled. The power inversion approach is
popular in military systems where jamming from highly maneuverable sources (fighter jets) is a pivotal
concern. The fast maneuvers of these vehicles makes the use of spatial-reference beamformers virtually
impossible, and therefore a simple and robust method like power inversion, that does not need any
reference or calibration procedure, is an excellent option.

3.20.4.3.2 Deterministic beamforming
Although it is recognized that data-dependent beamformers are more powerful in general than determin-
istic versions, there are some situations where the latter may be advantageous. Deterministic beamform-
ers are clearly more robust against calibration errors and other uncertainties in the signal parameters.
Moreover, if the desired and non-desired signals are known to be confined to distinct spatial regions,
the deterministic design may offer an adequate solution since the problem reduces to designing a spatial
filter with given pass and stop bands. This a priori spatial separability occurs in several circumstances in
GNSS, particularly in GNSS ground stations. In this case, the interference is normally ground-based, and
the multipath normally arises from ground-based scatterers, so both interference and multipath impinge
on the receiver from relatively low elevation angles. This is contrasted with the satellite signals, which
originate from the entire upper hemisphere. Thus, as illustrated in Figure 20.27, a fixed beamformer can
be designed to minimize reception of signals from these low elevations. The complicating factor here
is that an upwards-facing array typically cannot provide a sharp stop-band to pass-band transition for
directions near end-fire. Another advantage of deterministic beamformers is that they allow an easier
control of the trade-off between array gain (understood here as the increase of the ratio between the
desired signal power and the white noise power) and interference cancellation. In adaptive beamform-
ers, these two characteristics are tightly coupled. For instance, with MVDR, the presence of a strong
interference gives rise to a deep null in the pattern, and this null necessarily increases the beampattern
in other directions, thus degrading the array gain.

3.20.4.4 DOA estimation
DOA estimation algorithms can be used as a processing stage prior to beamforming. If the DOAs
of the LOS and reflected signals and interferences can be determined, then it is possible to design a
beamformer that, for instance, attenuates the reflections and interferences while maximizing the SNR
of the LOS signal. Given the identifiability limitations of DOA estimation methods and their sensitivity
to highly correlated signals, such a method would likely only be suitable in situations where there were
a small number of multipath and interference arrivals in addition to the LOS signal. The DOAs of the
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Desired and forbidden regions for the design of deterministic beamformers.

non-desired signals can typically be obtained in two stages; interference sources can be localized prior
to despreading, while the DOAs for multipath sources would have to be found after despreading. Even
when it is not possible to use estimation methods to determine the DOAs of all signals, such methods can
still be useful for detecting scenarios where the LOS signal is obstructed. Such information is critical in
tracking applications, since highly erroneous estimates due to non-LOS measurements can be eliminated.

3.20.4.5 Array-based parameter estimators
Probably the most rigorous approach to the use of antenna arrays for multipath and interference mitiga-
tion consists not in focusing on the use of the array to synthesize a beam that attenuates those unwanted
signals, but in formulating the measurement of the time delay and carrier phase of the LOS signal as
an estimation problem. The Maximum Likelihood (ML) approach used in many other areas of array
processing can also be used here. There is a large variety of models and assumptions that have been
used to derive ML estimators, as we briefly outline below. Recall the expression of y(t) in (20.50) and
assume that K samples or snapshots are taken from the array, which form the columns of a matrix Y.
This matrix can be expressed as

Y = A�(X(τ )� D(f))+ N, (20.54)

where A = [a0, . . ., aD],� = diag{α} = diag{α0, . . ., αD}, τ = [τ0, . . ., τD], and f = [ f0, . . ., fD].
The (k,n)th components of X and D are: [X(τ )]k,n = x(tn − τk) and [D(f)]k,n = e j2π fk tn . Matrix N
contains the snapshots of n(t), which includes all disturbances present in the received signal except for
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the multipath components. In particular, as it can include directional interference, it is logical to assume
that N is spatially colored. The spatial correlation matrix is denoted as Q and it is in general assumed to
be unknown. If we further assume for simplicity that N is temporally white, zero-mean and circularly-
symmetric complex Gaussian distributed, the negative log-likelihood function can be expressed as

L(Y,A,α, τ , f) = M ln det(Q)

+ tr
(

Q−1(Y − A�(X(τ )� D(f)))(Y − A�(X(τ )� D(f)))H
)
, (20.55)

where A can be replaced with the alternative parameterization discussed in Section 3.20.4.2. The ML
estimates of the different parameters can be obtained as the arguments that minimize (20.55). This opti-
mization problem, in its most general form, cannot be easily tackled because it has a large number of
variables and it is highly non-linear (and non-convex). As discussed below, simplifications are possible
depending on various modeling assumptions and how the problem is parameterized.

Unstructured spatial signatures and spatially white noise: The assumption of spatially white noise
allows determinant in (20.55) to be eliminated, and the ML problem turns into a least squares problem.
Since the resulting problem has the same structure as the estimation of the DOAs of unknown deter-
ministic signals, most DOA estimations algorithms can be adapted to the estimation of time delays and
frequencies in this new setup. A number of algorithms have been developed based on this parallelism
between conventional DOA estimation and time delay estimation with unstructured spatial signatures.
However, all techniques derived under the assumption of spatial whiteness suffer from a lack of interfer-
ence mitigation capability. In addition, the use of unstructured spatial signatures causes the variance of
the estimates to grow when the difference in delay and frequency shift of the replicas becomes smaller
(see Figure 20.28).

Structured spatial signatures and spatially white noise: In this approach, the steering vectors ak are
parameterized by the corresponding DOAs instead of being arbitrary complex vectors. This change
makes the estimation problem more non-linear and hence more complex to solve, but on the other hand
it provides in general more accurate estimates because the model parsimony is improved. The increased
accuracy is largely observed when the signals are very close to each other in the delay and frequency
dimension.

Unstructured spatial signatures and unknown spatial correlation: The ML estimator for this model
involves the determinant of the correlation matrix of the fitting residuals, and hence it does not correspond
to a least squares problem like the techniques derived under the assumptions of unstructured spatial
signatures and spatial white noise. Consequently, it is not possible to establish a clear parallelism
with DOA estimation algorithms, but techniques have been developed that are robust to directional
interference. In addition, asymptotically equivalent algorithms have been proposed that admit a simple
solution based on polynomial rooting.

Structured spatial signatures and unknown spatial correlation: This constitutes the most detailed
model for the problem at hand, and also the one that leads to the best performance as long as there are
no severe model mismatches with respect to reality. A direct optimization for this model requires a highly
non-linear search in the DOA, time delay and frequency spaces, which cannot be implemented easily
in an efficient manner. This limitation has been recently overcome by applying the Extended Invariance
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FIGURE 20.28

Qualitative representation of the behavior achieved with the estimators derived under different models. It is
assumed that the LOS signal and one reflection are received. The solid line corresponds to the model with
unstructured spatial signatures. The dashed line corresponds to the model with structured spatial signatures;
the line may be not totally constant, but in any case it shows a much smaller dependence with the delay than
the solid line. When the reflection is not mitigated, the errors have the shape depicted by the dash-dotted
line, where the increase in the RMSE is normally not due to an increase of the variance as in the other two
cases, but to the existence of large bias.

Principle (EXIP). The EXIP technique begins with ML estimates corresponding to the model with
unstructured spatial signatures and unknown spatial correlation described above, which can be obtained
with relatively low complexity. Then, these estimates are refined by means of a weighted least-squares
fit, resulting in improved estimates that have the same asymptotic accuracy as the exact ML estimates
directly derived from the model with structured spatial signatures and unknown spatial correlation.
The refinement approach boils down to a DOA estimation problem, and if the antenna array response
has a Vandermonde structure, a polynomial-rooting based DOA estimator can be used. Thus, in the
most difficult case involving DOAs and time delays of several replicas received in noise of unknown
spatial correlation, estimates asymptotically equivalent to the ML ones can be obtained simply rooting
two polynomials.

GNSS-specific signal models: Although the methods described above rigorously follow the logic of
model-based estimation, they may present limitations in some practical conditions. This is exemplified
by these two cases:

• The model in (20.54) assumes that the received signal is formed by several replicas of the transmitted
GNSS signal. The real received signal may not be constituted by a few clearly defined reflections, but
instead may consist of a large number or even a continuous distribution of components. In principle,
the accurate modeling of this reality would require the use of a very large value for D in the model,
and this would prohibitively increase the number of parameters to estimate and hence the complexity.
One can argue that a reasonable model can be obtained using only a few replicas that capture most
of the contribution of the actual multipath environment. But even if this is true, the estimation of the
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appropriate value of D (large enough to represent well the received signal, but not too large to avoid
overfitting of the model and excessive complexity) is an issue that needs to be addressed in any of
the model-based estimators presented above.

• There are some particular aspects of the GNSS application that are not adequately exploited. For
instance, the above methods provide estimates of all parameters in the model, but this is overkill in
GNSS, where only the parameters of the LOS signal are of interest for positioning. Moreover, there
is some side information that is not employed in the models, such as the a priori knowledge of the
DOA of the LOS signal, and the fact that reflections always arrive later than the LOS signal and
usually with smaller amplitudes.

As a consequence, a different way of proceeding consists in abandoning very detailed models attempt-
ing to provide a very precise description of the received signal (and maybe not achieving it because the
signal includes other effects not accounted for in the model), in favor of simpler models that focus on
particular aspects related to the GNSS application, even if they do not necessarily provide a compre-
hensive representation reality. For example, when LOS DOA can be assumed to be known, the vector
a0 can act as a spatial reference to the LOS signal, what makes it possible to approximately model
the reflections as part of the noise term with unknown spatial correlation and, hence, the value of D is
simply taken as zero. It can be shown that there is an equivalence between the estimator resulting from
this simplified model and the hybrid beamformer presented in Section 3.20.4.3.1, while a model with
D > 0 would provide a more accurate representation of reality (at the expense of increased complexity),
results have shown that there is typically not a large penalty in assuming D = 0. Problems will arise in
situations when the delay of the reflections are close to that of the LOS signal, in which case the time
delay and carrier phase estimates are biased. However, the degradation in such cases remains bounded.

3.20.5 Wireless communications
The use of antenna arrays in wireless communications provides one or more of the following types of
advantages: diversity gain, array (or beamforming) gain and multiplexing gain. Given that in practice
these gains lead to increases in capacity and spectral efficiency as well as improved robustness against
fading, multiple antenna (or MIMO) techniques have been included in recent wireless communication
standards. While the signal models and algorithms for multi-antenna wireless communications have
been studied in detail in other chapters, here we focus on specific ways in which multiple antennas are
exploited in current wireless standards.

3.20.5.1 Multiple antennas techniques in LTE
MIMO constitutes an essential element of LTE in order to achieve the highly demanding requirements
for transmission rate and spectral efficiency. LTE exploits multiple antennas for both diversity and
multiplexing [78,79, Ch.11], and also for both the downlink and uplink portions of the network.

3.20.5.1.1 Diversity schemes
Various sources of diversity are available to average out channel variations due to fading. This includes
time and frequency diversity, as well as transmit and receive diversity. Receive diversity is mandatory
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for user handsets, usually referred to as UE’s (User Equipment). It is the baseline receiver functionality
for which performance requirements are defined. The typical method consists in performing maximum
ratio combining (MRC) of the signals received at several antennas. We will focus however on transmit
diversity since many schemes were analyzed in detail during the standardization phase of LTE. Some
of the characteristics sought for the final selection of techniques were:

• Absence of puncturing in the presence of correlated channels. This eliminated the use of Cyclic Delay
Diversity (CDD) and Precoding Vector Switching (PVS) in favor of block-code-based schemes.

• Low decoding complexity, which eliminated the option of non-orthogonal block codes.
• Power efficiency. Each antenna has an instantaneous power limitation, so the power that is not

employed during one OFDM symbol (referred to as a “resource element” in LTE) cannot be shifted
to the following ones. On the other hand, power can be adaptively allocated in the frequency domain;
power that is not used in some subcarriers can be employed in others. The objective of using the
maximum available power makes it advisable to select schemes where all antennas transmit at all
times, though not necessarily in all subcarriers. This objective takes precedence over achieving a
uniform power distribution in the frequency domain.

• Robustness to channel estimation errors. Orthogonal block codes lose the orthogonality property
due to channel estimation errors at the receiver. As a certain level of error is unavoidable, it has to
be checked that these errors do not cause large interfering terms. Estimation errors are not the only
source of loss of orthogonality; variations of the channel that violate some design assumptions (such
as the channel is constant across a certain group of subcarriers or during some symbols) may also
create self-interference. It is desired to use techniques that do not make stringent assumptions about
the evolution of the channel in time or frequency. Moreover, the quality of the channel estimation is
not necessarily the same at all antennas. This means that all antennas are not statistically equivalent
on average and a proper balancing of the symbols among them is needed.

• Good adaptation to the structure of the signals. The signals are mapped to two-dimensional resource
blocks formed by a certain number of symbols and subcarriers. Some codes must be applied over a
number of symbols or subcarriers that is a multiple of a given value (typically two or four). It may
be easier to achieve the structure required by the code in one of the two dimensions. Since there are
many more subcarriers than symbols forming a resource block, it is usually simpler to apply the code
in the frequency domain because selecting a certain number of subcarriers is more manageable than
changing the number of symbols in a block. Furthermore, in LTE the number of available OFDM
symbols in a resource block is often odd.

• Reduced inter-cell interference. One must consider the impact of diversity techniques on the inter-
ference produced in neighboring cells.

For two-transmit-antenna diversity, the well-known Alamouti code is applied in the frequency
domain, constituting a Space-Frequency Block Code (SFBC). If y(p)(k) denotes the symbols trans-
mitted from the pth antenna on the kth subcarrier, at a given OFDM symbol period, the transmission
strategy of the eNodeB (i.e., the base station in LTE terminology) can be represented as follows:[

y(0)(k) y(0)(k + 1)
y(1)(k) y(1)(k + 1)

]
=
[

x(n) x(n + 1)
−x∗(n + 1) x∗(n)

]
, (20.56)
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FIGURE 20.29

Space-Frequency Block Code for four antennas used in LTE.

where x(n) represents the stream of symbols to be transmitted. In the case of four transmit antennas,
the previous code is applied to each pair of antennas. Each pair of antennas uses a different set of
frequencies, and hence the scheme is referred to as SFBC-FSTD, where FSTD stands for Frequency
Shift Transmit Diversity (also known as Frequency Switched Transmit Diversity). This is depicted in
Figure 20.29, and can be expressed as⎡⎢⎢⎣

y(0)(k) y(0)(k + 1) y(0)(k + 2) y(0)(k + 3)
y(1)(k) y(1)(k + 1) y(1)(k + 2) y(1)(k + 3)
y(2)(k) y(2)(k + 1) y(2)(k + 2) y(2)(k + 3)
y(3)(k) y(3)(k + 1) y(3)(k + 2) y(3)(k + 3)

⎤⎥⎥⎦

=

⎡⎢⎢⎣
x(n) x(n + 1) 0 0

0 0 x(n + 2) x(n + 3)
−x∗(n + 1) x∗(n) 0 0

0 0 −x∗(n + 3) x∗(n + 2)

⎤⎥⎥⎦ . (20.57)

This mapping is a full-rate orthogonal code with diversity order equal to two, which is smaller than the
possible maximum of four since full-rate full-diversity orthogonal codes do not exist for four antennas
and complex symbols. Note also that each pair of symbols uses antennas {0, 2} and {1, 3}. This is because
the channel estimates are better in antennas 0 and 1 since more pilot symbols are employed for these
antennas than for antennas 2 and 3. Thus, each pair of symbols makes use of one of the antennas for which
the receiver can obtain better channel estimates and another antenna for which the estimates are worse.

3.20.5.1.2 Multiplexing schemes
LTE supports closed-loop and open-loop MIMO transmission in the downlink using P = 2 or 4 antennas
and a number of multiplexing layers equal toυ = 1, 2, 3, or 4. A layer is a term used in LTE to denote the
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different data streams to be transmitted simultaneously using spatial multiplexing. As a consequence, the
number of layers represents the multiplexing gain and cannot exceed the number of transmit antennas;
thus, υ ≤ P . The number of layers is also referred to as the rank of the transmission. The mapping of
between codewords (i.e., an independently encoded data block) and layers is also specified in LTE. For
a transmission rank greater than 1, up to two codewords can be transmitted. In this case, each codeword
is assigned to each layer if υ = 2, one codeword is assigned to one layer and the other codeword is
split between the other two layers if υ = 3, and each codeword is mapped to a different pair of layers
if υ = 4. Multi-codeword transmission allows for the use of the computationally simpler MMSE-SIC
(Minimum Mean Square Error-Successive Interference Cancellation) detector, providing comparable
performance to the more complex ML detector applied to the single-codeword case, which on the other
hand enjoys an advantage in terms of ARQ ACK/NACK signaling.

The relation between the symbols at the antenna ports, y(p)(n), and the symbols in layer l, x (l)(n), is⎡⎢⎣ y(0)(n)
...

y(P−1)(n)

⎤⎥⎦ = W(n)

⎡⎢⎣ x (0)(n)
...

x (υ−1)(n)

⎤⎥⎦ , P = 1, 2, or 4, P ≥ υ = 1, 2, 3, or 4, (20.58)

where W(n) is a P × υ precoding matrix. Next we describe the closed- and open-loop approaches to
forming this matrix.

Closed-loop multiplexing schemes: The precoding matrices belong to a codebook. The receiver selects
the best precoding matrix based on its current channel estimates and feeds back an index to the trans-
mitter. For the case of rank-1 transmission with 2 antennas, the precoders are[

1
1

]
,

[
1

−1

]
,

[
1
j

]
,

[
1

− j

]
. (20.59)

The elements of the precoders are limited to the QPSK alphabet {±1,± j} to reduce computational
complexity at the UE by avoiding the use of complex multiplications. Moreover, there are no amplitude
differences between antennas because it is desired to use the maximum available power at each antenna.
These two properties are also valid for the other cases, with the caveat that with four antennas the
elements of the matrices can also belong to the 8-PSK alphabet: {±1,± j, (±1 ± j)/

√
2}.

For the case of rank-2 transmission with 2 antennas, the precoders are[
1 0
0 1

]
,

1√
2

[
1 1
1 −1

]
,

1√
2

[
1 j
1 − j

]
. (20.60)

The codebook for four antenna ports is formed by 16 matrices, which are obtained from 16 generating
vectors, vk , whose components belong to the 8-PSK alphabet by applying the Houselholder matrix
definition: I − 2vkvH

k . The precoders for ranks lower than four are obtained by a selected subset of the
columns of each matrix. This makes it straightforward to fulfill the nested property, whereby columns of
lower rank precoders are subsets of the columns of higher rank precoders, which considerably facilitates
the precoder evaluation at the UE. LTE admits both frequency-selective precoding, in which precoding
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weights are selected independently for different sub-bands of bandwidth ranging from 360 kHz to
1.44 MHz, and also wideband precoding, where a single set of single precoding weights are applied to
the entire transmission band.

Note that rank-1 transmission amounts to beamforming. Besides the beamforming case, LTE also
allows for UE-specific beamforming, which is not based on the feedback of precoding-related informa-
tion, but on channel state information obtained by the eNodeB using for instance DOAs measured from
the uplink signals or exploiting reciprocity in TDD scenarios.

Open-loop multiplexing schemes: The same diversity schemes as described in Section 3.20.5.1.1 are
used for rank-1 open-loop communication. For higher ranks, the general approach is to employ layer
cycling together with precoder cycling. Layer cycling is implemented by means of CDD (Cyclic Delay
Diversity), and the net effect is to circularly change the order of the columns of the precoding matrix.
Specifically, this type of CDD is called long-delay CDD in LTE terminology. This means each layer is
transmitted using a different column of the precoding matrix at successive OFDM symbols. The precoder
cycling consists simply of changing the precoding matrix after each set of υ resource elements, that
is to say, when a complete circular shift of the current matrix has been done. The logic behind this
approach is that precoder cycling provides a new realization of SINRs across the layers every time the
precoding matrix is changed, and layer cycling makes each codeword experience an SINR that is the
average of the SINRs of the layers because each codeword ends up using all columns of the precoding
matrix.

In order to put the description above in formulas, we can consider for example the case of P = 4
antennas andυ = 3 layers. The description is also valid for two or four layers with obvious modifications.
The same relation as in (20.58) is valid with the replacement of W(n) with

W
(⌊ n

υ

⌋
mod 4

)
D(n)U, (20.61)

where W(n) represents one of the 16 matrices previously mentioned, matrix D(n) applies CDD in the
frequency domain and U is the υ × υ DFT matrix:

U = 1√
3

⎡⎣1 1 1
1 e− j2π/3 e− j4π/3

1 e− j4π/3 e− j8π/3

⎤⎦ . (20.62)

The cyclic delay applied to the lth layer is equal to a fraction l/υ of the symbol duration, and then the
CDD matrix is

D(n) =
⎡⎣ 1 0 0

0 e− j2πn/3 0
0 0 e− j4πn/3

⎤⎦ . (20.63)

The set of possible precoding matrices contains four elements (for any number of layers), and the index
(� n
υ
� mod 4) selects another matrix every time a given matrix has been used forυ symbols. The important
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fact is that the combined effect of the CDD and the DFT matrices is

D(3m)U = 1√
3

⎡⎣1 1 1
1 e− j2π/3 e− j4π/3

1 e− j4π/3 e− j8π/3

⎤⎦ ,
D(3m + 1)U = 1√

3

⎡⎣ 1 1 1
e− j2π/3 e− j4π/3 1
e− j4π/3 e− j8π/3 1

⎤⎦ , (20.64)

D(3m + 2)U = 1√
3

⎡⎣ 1 1 1
e− j4π/3 1 e− j2π/3

e− j8π/3 1 e− j4π/3

⎤⎦ ,
which means that columns of the resulting matrix are shifted for successive symbols.

The case for two antennas is simpler because the precoding matrix W(n) is always the identity matrix
(so no precoder cycling is applied) and

D(n) =
[

1 0
0 (−1)n

]
. (20.65)

This implies that

D(2m)U = 1√
2

[
1 1
1 −1

]
,

D(2m + 1)U = 1√
2

[
1 1

−1 1

]
, (20.66)

which simply represents a swap of the columns between the two layers for consecutive symbols.

3.20.5.1.3 Multiple user MIMO (MU-MIMO)
The previous description is based on Release 8 of the LTE standard and has considered only Single-
User MIMO (SU-MIMO). That release includes a rather minimal MU-MIMO transmission scheme. It
is based on codebook feedback and uses the same codebooks as SU-MIMO. Actually, only the rank-1
precoders are employed because only one layer is utilized by each UE. The performance of this MU-
MIMO scheme is limited by the coarse codebook quantization and the lack of support for cross-talk
suppression at the UE. As a consequence, MU-MIMO only offers marginal gain with respect to SU-
MIMO. The shortcomings of this simple MU-MIMO approach are fixed in the subsequent releases
[80–82]. The set of new features included in Release 10 of the standard has made it possible to reach
spectral efficiencies of 30 bits/s/Hz in the downlink and 15 bits/s/Hz in the uplink [83, Section 7.3].

Release 9 allows for beamforming for up to four UEs. The beamformers are constructed by exploit-
ing channel reciprocity. It also includes the option of rank-2 transmissions to two UEs. Release 10
(also known as LTE-A or LTE-Advanced) supports configurations with up to 8 × 8 MIMO with eight
transmission layers, and as a consequence the set of precoding codebooks has also been extended using
the dual-codebook approach. That is, the precoding matrix is obtained as the multiplication of two
matrices, W1 and W2, where W1 is a block diagonal matrix matching the spatial covariance matrix of
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the dual-polarized antenna setup, and W2 is the antenna selection and cophasing matrix. The LTE-A
UEs have to provide feedback information for both W1 and W2. When only two or four antennas are
used at the eNodeB, W1 is the identity matrix and backwards compatibility with Releases 8 and 9 is
achieved. For the 8-transmit antenna configuration, W1 is obtained from the coefficients of the DFT.

An important contribution in LTE-A is the inclusion of Coordinated Multipoint transmission (CoMP),
whereby multiple eNodeBs can cooperate to determine the scheduling, transmission parameters, and
transmit antenna weights for a specific UE [84,85]. The objective is to reduce interference at the UEs,
making universal frequency reuse possible and, hence improving cell-edge throughput as well as average
sector throughput with little complexity increase at the receiver. Two major types of CoMP transmission
are identified for the downlink (DL) of LTE-A:

• Coordinated beamforming/coordinated scheduling (CB/CS) refers to techniques that do not required
data sharing between cells. However, CSI may be shared among cells. This family of techniques
includes coordinated beamforming/scheduling, adaptive fractional frequency reuse, interference
alignment, PMI (Precoding Matrix Indicators) coordinations, etc.

• Joint processing is characterized by the fact that data are shared, and it includes techniques such as
dynamic cell selection and joint transmission (network MIMO).

The CoMP concept can also be employed in the uplink by coordinating multiple cells to perform
joint reception of the transmitted signal at multiple receiving eNodeBs and/or by taking coordinated
scheduling decisions. Nevertheless, CoMP transmission/reception is an active area of research and
further studies are needed to reliably evaluate the gains of CoMP in LTE.

3.20.5.1.4 Uplink MIMO
In Release 8, only one antenna of the UE can be used for transmission, so it is possible to achieve
transmit diversity using an antenna selection mechanism, but single-user spatial multiplexing is not
feasible. However, the uplink (UL) can support MU-MIMO transparently with 2–6 UEs (although in
practice only two UEs are considered in order to limit receiver complexity). The number of UEs that can
share a resource block is determined by the number of orthogonal reference signals that can be assigned
to the UEs. The different reference signals are used by the eNodeB to estimate the channels of each
UE, from which a multiuser detector (e.g., using the MMSE criterion) is derived. In Release 10, spatial
multiplexing with 1, 2, or 4 transmit antennas at the UE and up to four layers is introduced. Open-loop and
closed-loop spatial multiplexing as well as transmit diversity are supported. Closed-loop multiplexing
relies on codebook-based precoding, and the codebooks are optimized to maintain a low PAPR.

To sum up, the evolution of MIMO techniques in the different releases of the standard is summarized
in Table 20.1.

3.20.5.2 Multiple antennas techniques in WiMAX
The IEEE 802.16m standard is the core technology for WiMAX Release 2 (WiMAX-2 in short), and it
contains the addition of several MIMO technologies to the ones included in IEEE 802.16e (which was
the basis of WiMAX Release 1) [86]. MIMO plays an essential role in WiMAX-2, as well as in LTE-A, in
order to meet the IMT-Advanced 4G requirements. Although terminologies in the IEEE 802.16 and 3GPP
LTE standards differ and the comparison may be confusing, the MIMO techniques used in both WiMAX-
2 and LTE-A, while different in various details, share in general the same fundamental approaches.
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Table 20.1 Evolution of the Support of MIMO Techniques in LTE

LTE (Rel-8) LTE (Rel-9) LTE-A (Rel-10)

Downlink • Codebook-based • Non-codebook-based
SU- & MU-MIMO precoding for eight layers

• Transmit diversity • Dual-stream beamforming • Enhanced MU-MIMO
• Dedicated reference • Inclusion of CoMP

signal-based beamforming

Uplink • MU-MIMO • Spatial multiplexing with
codebook-based precoding

• Antenna selection • Transmit diversity

FIGURE 20.30

WiMAX DL MIMO architecture (as shown in [89]).

Therefore, rather than describing the details of MIMO techniques in WiMAX-2, for which an excellent
review can be found in [87, Ch.10], we will focus on the similarities between LTE-A and WiMAX (a
compared overview can be found in [88]), and comment on some specifics aspects of the latter.

Both 802.16m and LTE-A support MIMO implementations with the same sets of antennas: 2, 4,
or 8 transmit antennas and a minimum of 2 receive antennas in the DL; 1, 2, or 4 transmit antennas
and a minimum of 2 receive antennas in the UL. The two systems also specify schemes for: open-
loop transmit diversity, open- and closed-loop spatial multiplexing, and MU-MIMO both in the UL
and DL. The WiMAX downlink architecture is represented in Figure 20.30. For open-loop transmit
diversity, WiMAX employs SFBC encoding combined with precoder cycling, whereas LTE employs
either SFBC or SFBC-FSTD. As far as open-loop spatial multiplexing is concerned, both systems
propose precoder cycling, but WiMAX does not include layer permutation with CDD. Closed-loop
spatial multiplexing relies on codebook-based precoding, and WiMAX has three feedback mechanisms:
base mode, transformation mode, and differential mode.

Codebook adaptation is defined in 802.16m, and it consists in changing the codeword distribution
according to long-term channel statistics. Each vector codeword of the rank-1 base codebook is linearly

Author’s personal copy



3.20.5 Wireless Communications 915

transformed and normalized to create a codeword in the new codebook. As a result, more codewords are
steered towards the ideal beamformer vectors and the codebook quantization error is reduced. Moreover,
codebook adaptation is also useful in achieving robustness against calibration errors in the antenna array
and transceiver chains. The derivation of the adaptive precoding matrix is specific to the implementation
and is not included in the standard. The case where the columns of the precoding matrix are orthogonal
to each other is called unitary precoding. Otherwise, it is defined as non-unitary precoding. Non-
unitary precoding is only allowed with closed-loop MU-MIMO. Advanced beamforming is also enabled
by this precoding mechanism. Besides the closed-loop MU-MIMO scheme, which is also present in
LTE, WiMAX-2 allows for open-loop MU-MIMO, where each terminal selects the preferred column
from a unitary matrix that has been preset for each frequency-domain resource. Each terminal reports
the channel quality indicator (not the spatial correlation matrix, which is the reason why the scheme
is considered to be open-loop), and the technique shows good performance with limited feedback
in uncorrelated and semi-correlated channels typically corresponding to urban areas with high user
density and no line-of-sight. A summary of the MIMO modes proposed for the downlink and uplink of
WiMAX-2 are summarized in Tables 20.2 and 20.3.

3.20.5.3 Multiple Antenna Techniques in IEEE 802.11
MIMO techniques play an essential role in the significant increase (54–600 Mbits) in the maximum
data rate provided by the IEEE 802.11n amendment to the IEEE 802.11-2007 standard. The single
largest contributor to the rate increment comes from the use of multiple antennas, which has the effect
of a fourfold increase. A factor of 2 can be attributed to the widening of the channels from 20 MHz to

Table 20.2 Downlink MIMO Modes

Mode index Description MIMO Encoding Format MIMO Precoding

0 Open-loop single-user Alamouti encoding in Non-adaptive
(transmit diversity) space-frequency

1 Open-loop single-user Transparent encoding Non-adaptive
(spatial multiplexing)

2 Closed-loop single-user Transparent encoding Adaptive
(spatial multiplexing)

3 Open-loop multiple-user Multi-layer encoding Non-adaptive
(spatial multiplexing)

4 Closed-loop multiple-user Multi-layer encoding Adaptive
(spatial multiplexing)

5 Open-loop single-user Conjugate data repetition Non-adaptive
(transmit diversity)
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Table 20.3 Uplink MIMO Modes

Mode index Description MIMO Encoding Format MIMO Precoding

0 Open-loop single-user Alamouti encoding in Non-adaptive
(transmit diversity) space-frequency

1 Open-loop single-user Transparent encoding Non-adaptive
(spatial multiplexing)

2 Closed-loop single-user Transparent encoding Adaptive
(spatial multiplexing)

3 Open-loop multiple-user Transparent encoding Non-adaptive
(collaborative spatial multiplexing)

4 Closed-loop multiple-user Transparent encoding Adaptive
(collaborative spatial multiplexing)

40 MHz; and the rest of the improvement (roughly about 40%) to reducing the overhead in the signal
[90]. IEEE 802.11a/g allowed only for a very basic exploitation of multiple antennas. Its method for
obtaining diversity was simple antenna selection, while IEEE 802.11n allows for the use of Space-Time
Block Codes (STBC), spatial multiplexing and transmit beamforming. Any number of transmit and
receive antennas with a maximum number of 4 at each side is permitted, and up to four data streams
can be multiplexed.

Two processing blocks are sequentially applied to the spatial streams to obtain the data streams to
be transmitted from each antenna [91,92]:

• STBC encoder: Spreads constellation points from NSS spatial streams into NSTS space-time streams
using a space-time block code. The STBC encoder is used only when NSS < NSTS, otherwise it is
a transparent block. If NSS = 1 and NSTS = 2, the Alamouti code is employed; if NSS = 2 and
NSTS = 3, one spatial stream is encoded by the Alamouti approach and the other stream is directly
mapped to the third space-time stream; if NSS = 2 and NSTS = 4, two disjoint pairs of space-time
streams are obtained by applying the Alamouti code to each spatial stream; and finally if NSS = 3
and NSTS = 4, one spatial stream is coded with the Alamouti code and the other two streams are
directly mapped to the output. The cases for a single spatial stream NSS = 1 with three or four
antennas are handled through the use of spatial expansion, which is mentioned below.

• Spatial mapper: Maps the NSTS space-time streams to the NTX antennas (where NTX ≥ NSTS)
by multiplying the space-time streams by a matrix, which is then passed along to each transmit
chain. Different matrices can be used for different subcarriers. Some examples of spatial mapping
are presented below, but other alternatives are possible and the standard does not restricts the imple-
mentation to these instances.

– Direct mapping: Each space-time stream is directly assigned to each antenna (only possible
when NTX = NSTS), possibly after multiplication by a complex exponential in order to
implement CDD.
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– Indirect mapping: The two sets of streams are related by a square unitary matrix such as the
Hadamard matrix or the Fourier matrix.

– Spatial expansion: The standard proposes several binary-valued (ones and zeros) matrices
covering the different combinations of the values of NTX and NSTS. The effect of these
matrices is simply to translate each of the NSTS streams to one or several antennas. For
instance, if NSTS = 1 and NTX = 3, the following matrix (vector, in this case) is proposed:
D = 1/

√
3[1 1 1]T , which implies that the same symbols are transmitted simultaneously

from the three antennas.
– Beamforming matrix: Represents any matrix that improves the reception based on some

knowledge of the channel between the transmitter and the receiver. Two mechanisms are
considered in the standard to obtain CSI at the transmit side. The first is called implicit feed-
back, which relies on reciprocity in the TDD operation mode to estimate the channel based
on a reference signal transmitted by the device that will act as receiver in the subsequent
communication. In the second mechanism, denoted as explicit feedback, the receiver sends
to the transmitter either the measured channel response or a beamforming matrix that it
has computed based on the measured channel. In the latter case, there are two possibilities,
namely, to simply transmit the coefficients of the beamforming matrix (called noncom-
pressed beamforming feedback matrix) or a set of angles and phases that parameterize that
matrix (called compressed beamforming feedback matrix).

As a final remark, it is worth mentioning that a cyclic shift can also be applied to the signal in each
antenna to prevent unintentional beamforming. The shift can be inserted either in the frequency or in
the time domain (i.e., before or after the IDFT).

3.20.6 Biomedical
There is an immense interest in processing the electrical, magnetic and acoustic signals that originate
from physiological processes, and extracting information that is useful for diagnosis and treatment.
Examples of such signals include those obtained via electrocardiography, measurements of the elec-
trical behavior of the heart; electroencephalography and magnetoencephalography, which measure the
electrical and magnetic activity of the brain; electromyography, observations of electrical signals in
muscle tissue, and so on. In addition, active measurement approaches exist that collect the response of
the body to magnetic or acoustic stimulation, as in magnetic resonance or ultrasonic imaging systems.
Arrays of sensors are used in many of these applications, primarily for localizing the source of the
signals in passive measurement systems, or for non-invasively imaging the internal structure of the
body in active systems.

In this section, we will briefly discuss three biomedical applications of array signal processing that
are widely employed in both clinical or research settings. These are by no means exhaustive; a notable
omission is magnetic resonance imaging (MRI), which uses a large array of coils to detect the precession
of molecules in response to applied external magnetic fields. However, these examples serve to illustrate
the important role array signal processing has in biomedicine.
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3.20.6.1 Ultrasonic imaging
Ultrasonic arrays for biomedical imaging are in widespread clinical use today, most commonly for
monitoring fetal development and for real-time imaging of heart valve operation and related blood flow.
Ultrasound imaging is relatively inexpensive compared with other imaging modalities, and the array and
associated equipment is relatively compact and portable. Ultrasonic images can achieve sub-millimeter
resolution, but the imaging process is more susceptible to noise and unpredictable propagation effects
than, say, MRI.

Ultrasound imaging is based on pulse-echo signal processing, much like an active radar. An array of
from many tens to a few hundred piezoelectric transducers transmits baseband signals with bandwidths
up to tens of MHz and then receives the resulting echoes. Broadband signals are usually employed for
imaging human tissue, while narrowband CW signals are employed for Doppler measurements of blood
flow velocities. An ultrasonic array is relatively compact, with an aperture of 50 mm or less, and can be
condensed to fit in a handheld wand that is manually placed on the body and oriented in some direction
of interest. The speed of sound in human tissue is approximately 1500 m/s, so the resulting wavelength
is typically much less than 1 mm. Consequently, near-field modeling of the acoustic wavefronts is often
necessary. The array typically has a slight inward curve to create a larger “fan-beam” image.

Traditionally, ultrasonic imagers have employed delay-and-sum beamforming to focus both the
transmit and receive signals, although with improvements in computational power, systems are now
being designed with adaptive (e.g., MVDR) beamforming to improve resolution and eliminate artifacts
due to interference entering through sidelobes. An important difference compared to radar is the severe
range-dependent attenuation the ultrasonic signal undergoes—with signal intensity decreasing by a
factor of two at 5 MHz for approximately every cm of distance the signal travels. This necessitates the
use of gain compensation on receive and leads to low SNRs at longer ranges. As focus moves towards
higher frequencies for better resolution, the attenuation problem increases.

3.20.6.2 EEG and MEG signal processing
Electroencephalography (EEG) and magnetoencephalography (MEG) are widely used in both clinical
practice and research since they provide direct measurement of cerebral activity with much higher
temporal resolution than other non-invasive methods such as functional MRI (fMRI). The analysis
of EEG/MEG signals is used for detecting and diagnosing neurological disorders such as epileptic
seizures, monitoring brain activity during sleep or anesthesia, analyzing the extent of brain damage
due to stroke or traumatic injury, etc. Such signals are also currently being investigated as a tool for
brain-computer interface applications that would allow individuals with sensory-motor impairments
(e.g., a paraplegic) to control a wheelchair, prosthetic limb or a computer input device via focused
cognitive activity. Although EEG/MEG techniques have lower spatial resolution than, for example,
fMRI, relatively high-resolution techniques for locating sources of cerebral activity have been proposed
to cope with this issue.

To obtain high spatial precision, EEG/MEG localization requires a large array of sensors or electrodes
(an example of a typical EEG array is shown in Figure 20.31), which leads to a high-dimensional inverse
problem that in general does not have a unique solution. Thus, in practice, a “forward” propagation
model for the brain, skull and scalp is adopted, and one attempts to estimate the parameters of the
model corresponding to the source activity. A common approach is to model the signal source in a
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FIGURE 20.31

Cap with electrodes for collecting EEG data.

small region of the brain as originating from an equivalent current dipole, treating the dipole location,
the orientation and magnitude of the dipole moment as dipole parameters to be estimated. Figure 20.32
depicts the equivalent dipole model, where the charge difference along a neuron (or neuron cluster)
causes a flow of current whose resulting electric or magnetic field can be measured by a sensor. While
EEG caps like the one in Figure 20.31 are used to place the sensor as close to the brain as possible, there
is increasing interest in and use of intracranial EEG measurements, or electrocorticography (ECoG),
where the electrode is placed beneath the skull immediately adjacent to the neural area of interest. ECoG
signals avoid the attenuation of the skull and scalp and provide a much higher SNR, but at the expensive
of an invasive implantation. In the next section, we describe the mathematical model that results from the
equivalent dipole assumption to illustrate its connection with other array signal processing applications.

3.20.6.2.1 Unified dipole model for EEG/MEG/ECoG measurements
Assume a current dipole located at position r ∈ R

3×1 and an electric or magnetic sensor located at
s ∈ R

3×1. In the following, we derive expressions for the electric or magnetic field y(t) at s due to the
dipole at r for the three measurement modalities EEG, MEG, and ECoG. We will see that all three lead
to expressions with a similar structure that allows us to formulate a unifying model for the output of
arrays of such sensors.
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FIGURE 20.32

Equivalent current dipole model for EEG measurements.

EEG: The electric potential at s caused by a current density JS at location r under a quasistatic
assumption (i.e., setting all time derivatives in Maxwell’s equations equal to zero) can be expressed as

y(t) = − 1

4πσ

∫
V

∇JS(r, t)

‖s − r‖ dr, (20.67)

where ∇ is the divergence operator and V is the volume of interest. A current dipole can be idealized
as a source and sink with equal magnitude, denoted by I0(t), and separated by a very small distance d,
which leads to

∇JS = −I0(t)[δ(s − r+)− δ(s − r−)], (20.68)

where δ is the Dirac delta function, and r+ (r−) is the source (sink) location. The dipole location r is
assumed to be at the midpoint between r+ and r−, and the orientation of the dipole is in the direction
of d = r+ − r− = 1

2 (r+ − r) = 1
2 (r − r−). Substituting (20.68) into (20.67), the potential generated

by the ideal dipole source becomes

y(t) = I0(t)

4πσ‖s − r+‖ − I0(t)

4πσ‖s − r−‖ . (20.69)

Assuming that ‖s − r+‖ � d , and similarly for r−, then

1

‖s − r+‖ ≈ 1

‖s − r‖ + (s − r)T d
2‖s − r‖3 ,

1

‖s − r−‖ ≈ 1

‖s − r‖ − (s − r)T d
2‖s − r‖3 .
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Substituting this approximation into (20.69), the potential received at r becomes

y(t) = I0(t)

4πσ

[
1

‖s − r‖ + (s − r)T d
2‖s − r‖3 −

(
1

‖s − r‖ − (s − r)T d
2‖s − r‖3

)]
= 1

4πσ

(s − r)T

‖s − r‖3 m(t), (20.70)

where the dipole moment is defined as m(t) = dI0(t). In the sequel, we will write m(t) = φs(t), where
φ = d/‖d‖ is the unit-magnitude dipole orientation, and s(t) = I0(t)‖d‖ is the moment magnitude.

MEG: Extracranial magnetic fields produced by neuronal activity within the brain can be calculated
using Biot-Savart’s law. A dipole source at r with dipole moment m(t) will generate a magnetic field
y(t) at sensor location s given by

y(t) = μ0(m(t)× (s − r))T

4π‖s − r‖3 t = μ0((s − r)× t)T

4π‖s − r‖3 m(t), (20.71)

where × denotes the vector cross product and t is a unit vector defining the orientation of the sensor. As
in the case of EEG, we will write m(t) = φs(t) with φ defining the orientation of the dipole moment.
Note that a dipole inside a spherically symmetric conductor with φ aligned with the sphere’s radius will
produce no external magnetic field. Consequently, for MEG applications, the orientation φ (and hence
the moment m(t)) is often expressed using only two rather than three coordinates.

ECoG: More involved models have been developed for ECoG settings due to the presence of local
currents and higher SNR. For a sensor inside the skull on the surface of the brain at position s, the
measured potential y(t) due to a dipole source at r with moment m(t) in a homogeneous conducting
sphere is given by

y(t) = 1

4πσ

(
2

r − s
rd3

+ 1

‖r‖2rd

[
r + r‖s‖ cos θ − ‖r‖s

‖r‖ + rd − ‖s‖ cos θ

])T

m(t), (20.72)

where σ is the conductivity value for the brain, θ denotes the angle between r and s and rd = ‖r − s‖.

General multi-source multi-sensor model: In all three cases discussed above, the equation for the
electric or magnetic field has the same general form. In particular, for an array of M sensors at positions
si , i = 1, . . .,M , the field can be represented as

yi (t) = g(si , r)T m(t), (20.73)

where the gain vector depends on which measurement system is employed:

EEG : g(si , r) = 1

4πσ

si − r
‖si − r‖3 , (20.74)

MEG : g(si , r) = μ0(si − r)× ti

4π‖si − r‖3 , (20.75)

ECoG : g(si , r) = 1

4πσ

(
2

r − si

r3
d,i

+ 1

‖r‖2rd,i

[
r + r‖si‖ cos θi − ‖r‖si

‖r‖ + rd,i − ‖si‖ cos θi

])
, (20.76)
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where all variables are as defined above, with the subscript i referencing sensor i. Thus, for all three
models, stacking the outputs of the M sensors together in the vector y(t) yields the same general equation:

y(t) =
⎡⎢⎣ gT (s1, r)

...

gT (sM , r)

⎤⎥⎦m(t) = G(r)m(t) = a(r,φ)s(t), (20.77)

where G(r) is M × 3 (or possibly M × 2 in the case of MEG data), and where the steering vector for
the source depends on its location and dipole orientation:

a(r,φ) = G(r)φ. (20.78)

The steering vector model in (20.78) has the same form as in RF applications with diversely polarized
signals. Finally, augmenting the model with the superposition of N sources as well as background
interference n(t), we end up with the standard array processing equation:

y(t) = [
a(r1,φ1) · · · a(rN ,φN )

]⎡⎢⎣ s1(t)
...

sN (t)

⎤⎥⎦+ n(t) = A(θ)s(t)+ n(t), (20.79)

where the vector θ contains the source location and dipole orientation parameters.
The fact that the steering or array manifold vectors depend linearly on the dipole orientations, and

that these vectors are assumed to satisfy φT
k φk = 1, lead to special types of solutions when estimating

the parameters. For example, a direct implementation of the MUSIC algorithm leads to

r̂, φ̂ = arg min
r,φ

φT GT (r)EnET
n G(r)φ

φT GT(r)G(r)φ
s.t. φT φ = 1, (20.80)

where En are the noise subspace eigenvectors of the covariance of y(t). It is straightforward to show that
minimizing the MUSIC criterion is equivalent to solving the following generalized eigenvalue problem
as a function of r:

r̂ = arg min
r
λmin(r), (20.81)

GT (r̂)EnET
n G(r̂)φ̂ = λmin(r̂)GT (r̂)G(r̂)φ̂, (20.82)

where λmin(r) is the smallest generalized eigenvalue for a given r. The position estimates r̂ are found
by searching for the value of r for which λmin(r) is minimized, and the dipole orientation estimate is
then given by the generalized eigenvector associated with λmin(r̂).

3.20.6.2.2 Interference mitigation
For EEG and MEG measurements, where the sensors are separated from the brain by the skull and scalp,
the signals of interest are very weak, and embedded in strong, spatially correlated noise and interference
due primarily to background brain activity not related to the stimulus of interest. If standard source
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localization algorithms are applied without some attempt at mitigating this interference, the results are
typically very poor. A common strategy in such situations is to design experiments with dual conditions,
one (control state) prior to application of the stimulus and one (activity state) after the stimulus has
been applied. In principle, the control state data will contain only background interference and sensor
noise, while the activity state data will contain statistically similar noise and interference as well as the
event-related signals. Prewhitening approaches are typically applied in dual-condition experiments like
these. In these approaches, the control state data are first used to estimate the spatial covariance matrix
of the interference plus noise using, for example, the following sample average:

R̂C = 1

nC

nC∑
t=1

yC (t)yT
C (t), (20.83)

where nC is the number of control state samples. The activity state data, yA(t), is then prewhitened in
an attempt to eliminate the influence of the interference and noise as follows:

y′
A(t) = R̂−1/2

C yA(t). (20.84)

A drawback to the use of prewhitening is that it requires that the spatial and temporal statistics of
the interference and noise during the control state be identical to those during the activity state. If the
assumption of stationarity between these two states is violated, then methods based on prewhitening
can suffer a significant performance degradation. An alternative is to use projection-based methods that
estimate a spatial-only subspace in which the bulk of the interference energy lies during the control
state, and then project away this subspace in the activity state data. This method eliminates the need
for temporal stationarity, and relies only on the assumption that the locations of the interference in the
control and activity states remain unchanged. This is a reasonable assumption since any “new” source that
appears during the activity state is considered to be related to the stimulus, and is thus a source of interest.

As an example, we present here the results of an experimental study with real EEG data. Experiments
with an auditory stimulus applied to the left ear were conducted with a single human subject to elicit
auditory-evoked potentials. MUSIC and LCMV were applied to the resulting data using both prewhiten-
ing (PW) and the projection (NP) technique and assuming the number of sources was one. Figures 20.33
and 20.34 show the spatial spectra of the four algorithm combinations. The projection-based methods
provide an activity map that closely corresponds to what one would expect, with energy confined to the
auditory cortex. On the other hand, the prewhitening-based methods contain a number of apparently
unrelated artifacts, and the PW-LCMV method does not even show any energy near the auditory cortex.

3.20.6.3 Multi-sensor extracellular probes
Direct measurement of neural action potentials (APs) using electrodes inserted directly into biological
tissue has become an important neurological research and diagnostic tool. The goal is to record the
APs of individual neurons, often referred to as “single-unit activity,” in order to obtain a more precise
view of the underlying neurophysiology. Information from these recordings are potentially useful in the
development of artificial prostheses and in the diagnosis and treatment of paralysis and brain disorders
such as epilepsy and memory loss. Even though the electrodes are small and can be inserted with high
accuracy to target a specific location, they will typically record the superposition of the activity from
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FIGURE 20.33

Spatial spectra of four algorithm combinations using experimental data (top view).

FIGURE 20.34

Same as previous figure (side view).
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FIGURE 20.35

Automated procedures for AP sorting.

several neurons. The process of separating out the single-unit activity of individual neurons from the
multi-unit activity in the noisy electrode measurements is often referred to as AP or “spike” sorting.

In practice, manual sorting of APs in large volumes of experimental data is prohibitively time-
consuming, and automated procedures for AP sorting have become essential. As depicted in Figure 20.35,
an automated AP sorting algorithm can be divided into three main steps: (1) AP detection and time align-
ment: determining the locations of the APs in the electrode time series and arranging the isolated AP
waveforms so that they “line up” in time, (2) feature extraction: extracting a low-dimensional set of
parameters for each detected AP that can be used to discriminate between different sources, and (3) clus-
tering: grouping the extracted features into clusters in order to associate them with individual neurons.
The feature extraction step is crucial since it reduces the effect of noise and removes redundant informa-
tion in the input data so that clustering algorithms can work efficiently. The three most common feature
categories discussed in the literature are: (1) AP shape-related features, such as AP height, width, peak-
to-peak amplitude, inter-AP interval, and first-order derivative, (2) wavelet coefficients, and (3) principal
components (PCs). One common characteristic of these features is that they only capture “temporal”
information since they are obtained by processing single-sensor measurements. However, AP sorting
based only on temporal features is challenging since neurons with similar geometries located at roughly
equal distances to the electrode can generate very similar AP waveforms and therefore similar features.

To overcome this problem, multi-sensor extracellular probes (e.g., tetrodes) that record a time-aligned
multi-channel data set have been suggested. The simplest way to use the data from multi-sensor probes
is to apply standard feature extraction techniques to all of the channels individually, and then combine
all the extracted features as inputs for clustering. Other approaches use the availability of spatially
distinct channel measurements to obtain neuron location estimates or independent components as feature
vectors for clustering. Independent component analysis (ICA) is a computational method for separating a
multivariate signal into additive subcomponents. While ICA can potentially resolve overlapping spikes,
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it requires strong assumptions regarding the non-Gaussianity and independence of the APs, and a
separate feature extraction step is still required to identify the source of the recovered AP waveform.
Matched subspace (MS) techniques attempt to detect the presence of a signal that lies in an a priori
unknown low-dimensional subspace of the data. Unlike multi-sensor principal component analysis and
algorithms based on location estimates, which respectively allow only temporal or spatial information
to be extracted, the MS approach provides a joint spatio-temporal feature vector that is more effective
for differentiating between individual neurons. Furthermore, the spatial information obtained by MS
techniques is achieved without the need for a forward propagation model as required by location-based
methods.

3.20.6.3.1 Data model
Assume that the APs have been accurately detected in a previous step using existing approaches. A block
of samples around each detected AP peak is isolated, and it is time-aligned with data blocks obtained for
other detected APs. Assuming M electrodes and N samples per block, the data for the i th detected AP will
consist of an M × N matrix Yi , which is referred to as an AP “bundle.” Assuming that each bundle con-
sists of an AP from a single neuron, and assuming that the AP signal results in an instantaneous mixture
at the electrode array (i.e., a rank-one signal component), an appropriate mathematical model for Yi is:

Yi = Si + Wi = ai vT
i + Wi , (20.85)

where Si ∈ R
M×N represents the noise-free multi-sensor signal corresponding to the AP, Wi is com-

posed of zero-mean background neural and sensor noise, ai ∈ R
M×1 is the spatial signature of the target

neuron, and vi ∈ R
N×1 corresponds to the sampled AP waveform.

By vectorizing the data matrix, we obtain

yi = si + wi = vi ⊗ ai + wi

= �ci ⊗ ai + wi (20.86)

= (� ⊗ ai )ci + wi , (20.87)

where ⊗ denotes the Kronecker product and yi , si , and wi are M N × 1 vectors formed from Yi ,Si ,
and Wi , respectively. The term vi = �ci models the AP in the absence of any specific information
about the waveform, with matrix � ∈ R

N×p (p ≤ N ) representing a chosen orthonormal basis and
c ∈ R

p×1 representing the corresponding coefficient vector. Modeling the AP signal in this way not
only provides the possibility of a compact representation for the AP but also eliminates the need for AP
templates, which enables unsupervised spike sorting. Although � can be any orthonormal basis, one
with a compact support such as the wavelet basis is preferred in general since APs tend to be pulse-like.

3.20.6.3.2 Multi-sensor feature extraction
In the discussion that follows, we briefly describe several popular algorithms for feature extraction from
a given M N × 1 AP bundle yi . In some cases, the methods either assume a single sensor (M = 1) or
they operate on each sensor independently. We will use the notation y(k)i = yi (k : M : M(N − 1)+ k)
to represent the data from the kth sensor, where the indexing k : M : M(N − 1)+ k indicates we select
every Mth sample from yi starting with sample k. The variable p will be used to denote the dimension
of the extracted feature vector.
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Discrete wavelet transform: The wavelet transform is a popular choice for feature extraction in the
spike sorting application since it offers simultaneous interpretation of the signal in both time and scale
(frequency), which allows local, transient or intermittent components to be elucidated. It has advantages
over the traditional Fourier transform in analyzing physical signals since it can provide a compact signal
representation in both the time and scale domains. The discrete wavelet transform (DWT) decomposes
the data from a single sensor as follows:

y(k)i = �wc(k)i , (20.88)

where �w ∈ R
N×N is a basis matrix that defines the DWT, and c(k)i ∈ R

N×1 represents the DWT
coefficient vector. The DWT basis is typically assumed to be orthonormal, so the coefficient vector is
found by simply computing c(k)i = �T

wy(k)i . The feature vector ĉ(k)i ∈ R
p×1 is determined by choosing

a subset of p of the coefficients in the full DWT vector c(k)i . The choice of which p coefficients to use
can in principle be different for each sensor k, but must be the same for each AP bundle. For example,
feature reduction for the DWT can be achieved by selecting the p coefficients that have the largest
average magnitudes. Once a reduced-dimension set of features is chosen for each sensor, the complete
feature vector is formed by stacking them all together:

ĉw = vec
([

ĉ(1)w · · · ĉ(m)w

])
. (20.89)

Principal component analysis: A difficulty associated with the DWT approach is there is no systematic
way to choose the wavelet basis so that it is somehow optimized for the signals at hand. Principal
component analysis (PCA) addresses this issue by calculating a data-dependent basis that corresponds
to the principle subspace where most of the signal energy resides. This is most commonly achieved by
performing the singular value decomposition (SVD) on a subset of n > p of the AP bundles

Uk�kVT
k =

[
y(k)i1

y(k)i2
. . . y(k)in

]
, (20.90)

where i1, i2, . . ., in are the indices corresponding to the n AP bundles chosen for the analysis. The PCA
basis �

(k)
p ∈ R

N×p is then taken to be the first p columns of Uk , and the PCA feature vector (sometimes

referred to as the “score” vector) is calculated as ĉ(k)i = �
(k)T
p y(k)i . In most applications of PCA to this

problem, p is chosen to be between two to three. Alternatively, a single basis for all k can be found by
including AP bundles from all sensors in the SVD of (20.90). As in the DWT approach, once features
are extracted for each k, the complete feature vector is found by stacking them together as in (20.89).

Matched Subspace Detector: The Matched Subspace Detector (MSD) can be thought of as a general-
ization of the well-known matched filter from signal processing, where a noisy signal yi is correlated
with a parameterized version of the signal of interest s to produce the output sT yi . The parameters are
chosen as those that maximize the resulting correlation. The single-sensor versions of the DWT and
PCA algorithms described in the previous section, where s = �c, can be thought of as implementing a
simple matched filter:

ĉi = arg max
c

‖sT yi‖2 = arg max
c

‖cT �T yi‖2

s.t. ‖c‖ = ‖yi‖ = αi , (20.91)
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where the constraint on c is used to maintain energy equivalence. The solution to (20.91) is the same as
that given earlier for DWT and PCA: ĉi = �T yi .

The general MSD approach can be viewed as a natural multi-sensor extension of the single-sensor
DWT or PCA approaches. Instead of the single-sensor parameterization s = �c, the multi-sensor param-
eterization in (20.87) is used. In particular, MSD solves the following generalized version of (20.91):

âi , ĉi = arg max
a,c

∥∥∥sT yi

∥∥∥2 = arg max
a,c

∥∥∥(�c ⊗ a)T yi

∥∥∥2

s.t. ‖a‖ = 1, ‖c‖ = ‖yi‖ = αi , (20.92)

where the constraints match those used in the model to ensure identifiability. It is straightforward to
find a closed form solution for both âi , ĉi .

The MSD algorithm can be used in conjunction with either the DWT or PCA, or any other choice
of the temporal basis matrix �. The number of features produced by the MSD algorithm will be the M
spatial features from the elements of âi , plus however many temporal features are provided by ĉi , which
in turn depends on the dimension of �. For the case of PCA, where � ∈ R

N×p and typically p � N , the
temporal feature vector ĉi will have p elements. For the DWT, where � is N ×N , ĉi will have N elements.
Note that in this case, âi can be found from the SVD of X′

i rather than X′
i�, since both matrices have the

same set of left singular vectors. Whether the total number of space-time features obtained by MSD is
M + N or M + P , it is often desirable to reduce the number of features to a more manageable number.

3.20.7 Sonar
In the context of naval warfare, sonar is used to detect, locate, track and identify surface and submerged
vehicles. This is one of the classical early applications of digital array signal processing. Since required
bandwidths are often small and operating frequencies are low (10s of Hz to about 30 kHz) due to
propagation limitations at higher frequencies in the ocean environment, corresponding sample and data
rates are low enough to have been accommodated by ADCs and signal processing computers available
in the 1970s and 1980s. The well funded military applications spurred rapid development in that era, and
the transition from analog to digital systems enabled significant capability enhancements and increased
processing complexity. Many of the classical array processing and statistically optimal beamforming
algorithms were first demonstrated in sonar applications.

We will address two major classes of sonar: active and passive. Active sonar has much in common
with radar systems in that a pulse, or sequence of pulses, is transmitted and the return echo signal is
analyzed to detect vehicle range, direction, and range rate (radial velocity). This can be viewed as an
non-cooperative digital wireless communications problem where the transmitted pulse corresponds to
communications symbol, and two-way propagation effects including reflection from the target corre-
spond to the communications channel.

Passive sonar is a “listen only” mode used when stealthy operation is important so as not to reveal one’s
own position with a transmitted pulse. Acoustic radiation is detected from the target’s turning propeller,
internal machinery, occupants, or flow turbulence as it moves through the water. Passive systems can
typically estimate target direction, and can classify the source as to speed, vehicle type, or even specific
hull number by comparing the signal spectrum to previously obtained acoustic signature data bases.
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The primary use of sensor and transmitting arrays in sonar is to exploit spatial information in the
channel, including estimating directions of arrival, improving gain, and mitigating against noise and
other interfering sources. We will also discuss in Section 3.20.7.3 how array processing combined with
good acoustic propagation models can be used in passive sonar to estimate range and depth at a distance,
without access to two-way propagation time-of-flight information.

3.20.7.1 Sonar arrays
The sensors used in sonar arrays are hydrophones that act as underwater microphones and acoustic
drivers. Most hydrophones are constructed of ceramic piezoelectric transducer material, which operates
effectively over the range of a few Hz to tens of kHz. In active sonar the same hydrophone elements
are used for both transmit and receive. The total instantaneous array output power for long range sonar
systems can be many tens of kilowatts. At very low frequencies some systems use electromagnetic lin-
ear motors (like speaker driver coils) or hydraulic actuators. Infrasonic pulses have also been generated
using explosive charges.

Depending on the intended application and the supporting platform, sonar arrays are found in a variety
of physical forms. Spherical or cylindrical arrays as seen in Figure 20.36 are housed in the bulbous bow
protrusions below the water line of many military surface ships, and encased in the streamlined bow of
submarines. These typically operate in the 1–6 kHz range and are capable of steering pencil beams in
both azimuth and depression angle. An example of a spherical array is the US Navy AN/BSY-2 sonar
on the Sea Wolf submarine.

FIGURE 20.36

An illustration of the spherical array in the Virginia III class of submarines.
Credit: Defense Industry Daily.
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Conformal arrays use a thinly layered grid of hydrophones mounted on the nose or sides of vessels so
as to blend smoothly with the contours of the hull design. Though this may be a less than ideal geometry
for acoustic beamforming, it has the benefit of maintaining a streamlined structure for reduced drag and
flow noise turbulence while allowing a larger aperture than is practical with a spherical array.

Long tubular towed array lines are pulled behind surface ships, submarines, and barges. Many
hydrophones are spaced regularly inside a garden-hose-like tube that can be thousands of feet long.
Depth is controlled either by adjusting the payout of the tow cable, or with an actively controlled
tow body at the end of the array or at the tow cable attachment point. This enables steering to, and
maintaining a desired depth (see Figure 20.37). Because of their length, towed arrays offer very large
apertures for increased bearing resolution, narrow beams, high sensitivity due to many sensors and
separation from ship self noise, and lower frequency operation as compared to hull mounted arrays.
One drawback with the towed array is its one-dimensional linear geometry which leads to annularly
symmetric (donut shaped) formed beampatterns. This yields no directivity in the vertical dimension,
and a left-right ambiguity that requires the support ship to make turn maneuvers to resolve. The
low frequency, long range, barge-towed US Navy SURTASS system is an example of a towed array
sonar.

When mobility is essential or when submarine detection is needed at the far perimeter of the sonar
reach from a naval battle group, then helicopter-borne dipping sonar is highly effective. A sonar array is
reeled down to great depth from a hovering helicopter. Figure 20.38 shows a 1980s era system that is still
in service, the US Navy AN/AQS-13 sonar. More recent developments like the US Navy AN/AQS-22
ALFS dipping sonar include extendable hydrophone support arms which increase aperture and permit
lower frequency operation.

Modern torpedoes like the US Navy Mk 48 ADCAP shown in Figure 20.39 are quite autonomous.
They are able to search out, detect, track, and target surface ships and submarines without the necessity

FIGURE 20.37

A French type F70 frigate (the Motte-Picquet) fitted with VDS (Variable Depth Sonar) type DUBV43 or
DUBV43C towed array sonars. The array reeling mechanism and tow depth control body can be seen.

Credit: Used by permission, NetMarine. Photographer: Jean-Michel Roche.
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FIGURE 20.38

A US Navy 1980s era Sikorsky SH-3H Sea King helicopter lowers its AN/AQS-13 dipping sonar.
Credit: US DefenseImagery (www.defenseimagery.mil), PH1 R.O. Overholt, USN.

FIGURE 20.39

Maintenance on an early development model of the US Navy Mk 48 ADCAP torpedo. The sonar hydrophone
array lies behind the rubber shielded flat front nose plate.

Credit: US DefenseImagery ( www.defenseimagery.mil).

of guidance and control from the launching boat. These tasks are performed using a nose-mounted
planar array and on-board signal processing. The Mk 48 array is a nose-mounted grid of piezoelectric
hydrophones which steer pencil beams for detection and direction finding.
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Other sonar arrays are not mobile, but are permanently moored to the ocean floor. We will discuss
in Section 3.20.7.3 how a fixed vertical line array can be used in matched field processing to estimate
source range and depth using only passive observations. There are a number of very large and widely
dispersed bottom-affixed passive sensor arrays used for surveillance in strategic ocean regions, including
the US Navy’s SOSUS network.

3.20.7.2 The undersea acoustic channel
Effective sonar signal processing requires an understanding of the challenging characteristics of sound
propagation in an the ocean environment. In many ways sonar propagation is more complex and variable
than the radio frequency channel encountered in wireless communications, radio astronomy, or radar.
Fortunately though, propagation in the deep ocean is well understood, can be modeled accurately, and
coherent processing across a large sensor array is possible even for distant sources.

3.20.7.2.1 Propagation models
Sound velocity in salt water is nominally 5000 ft per second, but this varies significantly with depth,
sea temperature, and local salinity. Figure 20.40 illustrates a representative depth-dependent sound
velocity profile c(z) and the resulting ray propagation characteristics. The increasing velocity near the
sea floor is due to greatly increased pressure in the deep isothermal layer below about 3000 ft. Velocity
also increases as depth decreases between the deep sound channel and the surface duct due to rising
temperature as depth decreases in the main thermocline layer. The cross-over between these two effects
leads to a velocity minimum that focuses acoustic energy in the stable deep sound channel which can
propagate great distances and maintain coherency across the ray paths.

Propagation effects near the surface are much more variable and depend on diurnal heating and
cooling, surface mixing due to wind and wave action, latitude, and formation of seasonal thermocline
layers. A relatively shallow surface layer duct often forms which traps energy near the surface, allowing
sonar propagation and detection with shallow arrays. This may be the only possibility if the source also
lies in the duct. However, due to sea roughness and losses at the sea-air interface, transmission loss is
greater in this layer and rays die out more rapidly than in the deep sound channel.

Another important propagation effect not illustrated in Figure 20.40 is the convergence zone. Rays
of higher angular incidence (at the sensor array or source) will periodically extend beyond the deep
sound channel and intersect the surface. This forms a ring on the surface at a fixed range from the sonar
array of convergent ray paths that enable surface ship detection at great distances. The radial separation
between the successive convergence zones is typically on the order or 20 miles.

Optimal placement of sensor arrays (in depth), identifying convergence zones, and estimating range
require specific knowledge of c(z) to enable numerical ray path modeling of the sound channel. This
information is obtained to great depths by bathythermograph and velocimeter sounders which are
dropped overboard from surface ships or non-retrievably deployed from helicopters or other naval sup-
port fixed wing aircraft (e.g., the PC-3 Orion). When there are multiple vessels in the operational theater
it is possible to collect these environmental data periodically over a large area. In situ measurements
are supplemented with historical data, seasonal and weather models, and ocean bottom topography data
to provide quite accurate sound velocity profile results. These enable useful acoustic channel ray trace
modeling.
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z

c(z)

zs

FIGURE 20.40

Acoustic propagation model for a horizontally stratified ocean. The convex-to-the left sound velocity function
c(z ) forms long distance propagating modes (or acoustic ray paths) in the deep sound channel. The complex
wavefront seen at the hydrophone array depends on source depth z and range, enabling estimation of these
source parameters using MFP.

3.20.7.2.2 Transmission loss
Signal loss in the undersea acoustic channel is due to physical wavefront spreading, volume absorption,
and leakage and scattering at the surface and bottom. One would expect near-field propagation to follow
a spherical spreading law with loss proportional to 1/r2, and long distance propagation confined by the
ocean surface and sea bottom to a planar disc to have cylindrical spreading loss proportional to 1/r ,
where r is range to the source. However extensive field measurements suggest that due to scattering
and leakage, spherical spreading with 1/r2 loss is a better match over a wide range of conditions.
A commonly used model for sonar transmission loss in dB is

TL ≈ (20 log10 r)+ αr × 10−3, (20.93)

α = 16π2

3ρc3

(
μs + 3

4
μv

)
f 2, (20.94)
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where α is defined in units of decibels loss per thousand yards, r is (following sonar convention) in yards,
and f is frequency in Hz. The first term in (20.93) is due to spherical spreading. Other parameters for
pure distilled water are densityρ ≈ 1 gm/cm3, sound velocity c ≈ 1.5×105 cm/s, shear viscosityμs ≈
0.01 poises, and volume viscosityμv ≈ 0.0281 poises. Below about 100 Hz the effective α in sea water
increases (as compared to distilled water) by a factor of 30 due primarily to dissolved magnesium sulfate.

The fact that attenuation in dB is proportional to f 2 suggests that for long range detection it will
be highly advantageous to use low frequencies. This is born out in practice where short range and
targeting sonars with small arrays typically operate at tens of kHz, medium range hull mounted arrays
and helicopter dipping sonars are at 1–6 kHz, and long range towed array sonars cover 10 Hz to a
few 100 Hz. Even at low frequencies, spreading losses are significant at long ranges so in order to put
sufficient energy into the water, active sonar systems typically use very long transmit pulses on the order
of several seconds. Fortunately the sound channel is stable over such long pulse periods and coherent
matched filter detection processing of echoes is possible.

3.20.7.2.3 Noise and reverberation
Sonar systems must detect weak signals in an inherently very noisy environment. Noise sources are
many and varied, but we will mention approximate average levels for some significant sources in deep
water conditions.

• Between 1 Hz and 10 Hz there are a variety of sources that contribute to an average level of approx-
imately 105 dB rel 1 µPa at 1 Hz, which declines with a slope of −30 dB per decade of frequency
increase.

• Between about 10 Hz and 150 Hz, the dominant source is mechanical and turbulence noise from
distant surface shipping. Acoustic levels range from 60 to 85 dB rel 1 µPa for light to heavy shipping
traffic conditions, respectively.

• Between about 100 Hz and 100 kHz The dominant source is surface noise from wind and wave
action. Levels decline with increased frequency with a slope of about −20 dB per decade. At 1 kHz
surface noise levels range from 44 to 70 dB rel 1 µPa for sea state 0–6, respectively.

Additional external noise sources include biologics such as shrimp (one of the loudest) and marine
mammals. Self-generated noise from the platform vehicle is of course very local and potentially strong.
It includes flow noise due to turbulence across the hydrophone surfaces for a moving platform, and
propulsion, machinery and other noise associated with the support vehicle.

Flow noise is very local to each hydrophone and is thus well modeled as statistically independent
per sensor, and often i.i.d. Surface sea state noise is typically quite widespread and can often be approx-
imately modeled as isotropic within a horizontal plane containing the array. Shipping noise can be
directional (spatially colored) since it is concentrated in well traveled shipping lanes. Biologic sources
include very direction-dependent and distant marine mammals and more local swarms of shrimp-like
noise makers. Beamforming algorithms which place nulls on the nearby directional noise sources can
be very effective in improving SNR in this environment.

Detection processing in active sonar must deal with significant reverberation. There are three main
sources: volume reverberation, surface reflections, and bottom backscatter from rough clutter topgraphic
features. Volume reflection is due to widely distributed particulate matter and marine life in the path
of the transmit beam. It is strongest during the early portion of the pulse period. The initial surface
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reflection arrives from directly above the array, with additional backscatter occurring as ray paths
intersect the surface during rough sea-air interface conditions due to higher sea state. Multiple bottom-
surface reflections lead to a nearly periodic structure for reverberation peaks within an exponentially
decaying envelope. Reverberation can be reduced by extending the vertical array aperture to narrow the
transmit and receive beampatterns in the vertical dimension. A time-dependent automatic gain control
is also used in the receiver to avoid signal clipping during strong reverberation early in the pulse period.
When the target of interest is moving, Doppler gating can also be used to reject reverberation from
stationary clutter and to highlight the frequency-shifted target echo return.

3.20.7.3 Matched field processing
Matched field processing (MFP) is an interesting passive sonar application where modeled ray propaga-
tion is compared with the signal spatial structure at the receive array to estimate parameters of interest.
The classical MFP application is to estimate source (target) range and depth at great distances, though
it is theoretically possible to use the technique to identify environmental parameters such as ocean floor
geography, propagation medium inhomogeneities, and even global undersea tomography. Unlike active
sonar where two-way time of flight is used to directly measure range, and depth is not usually observable,
in passive MFP it is possible to infer these parameters from the spatial phase and amplitude structure
of the wavefront at the sensor array. Source localization can be viewed as an acoustic channel inversion
problem exploiting sufficient complexity in the spatial signal distribution across a sensor array and a
well-modeled channel transfer function between any candidate source position and each array sensor.
This is not simple wavefront curvature estimation which can only be used effectively at shorter ranges
within the Fresnel limits of the array. Success depends on the ability to accurately model the ducted,
wave-guided acoustic propagation from source to sensor in a planar channel constrained by the ocean
surface above, sea floor below, and a thermal-gradient-induced refractive deep-sound channel which
directs (bends) acoustic rays with shallow incidence angles back toward the channel center. As illustrated
in Figure 20.40, signals arrive at the array as a finite set of multipath rays, or acoustic modes, which are
the discrete solutions to the frequency domain wave Eq. (20.95) and whose angular and depth distribu-
tion, or spatial spectrum, depends on the channel structure and source and sensor element positions.

To solve the channel inversion problem, source position parameters are varied within a propagation
model for an optimization search to find the best “match” between the predicted and observed acoustic
“field” at the sensor array. MFP relies on accurate full wave parametric modeling of acoustic waveguide
propagation between the source and the array of hydrophone sensors, typically constructed as a vertical
line array. Model mismatch of course impairs localization performance, but at low frequencies (10–
100s of Hz) the sea channel maintains remarkable phase coherency across propagation modes and
ray paths and existing models are sufficiently accurate. The MFP approach has been successfully
demonstrated over ranges of hundreds of kilometers. Externally provided environmental parameters
needed in the model include the sound velocity profile, bottom composition, and bottom topography.
Contemporary measurements are obtained within a few hours of the MFP observations by deploying
sounding instruments overboard to record sound velocity to great depths.

In this section we will follow in part the development found in [131]. Assuming waveguided propa-
gation and a distant source, surface and bottom scattered signal components are attenuated to the point
where they are negligible relative to modal components. These modes represent the multiple ray paths in
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the deep sound channel between the source and individual array elements, and are the discrete solutions
to the temporal frequency domain wave equation[

∇2 + K 2(v)
]

g(v, vs) = −δ(v − vs), (20.95)

where v = [x, y, z]T is a position vector for an arbitrary point in the ocean channel, g(v)is the nor-
malized (assuming a unit amplitude source) velocity potential or pressure, ∇2 is the spatial Laplacian
operator, K (v) = �

c(v) is the position dependent medium wave number,� is the radian frequency of the
narrowband acoustic source, c(v) is the local sound velocity, vs is the source position, and δ(·) is the
3D delta function. Since the source is modeled as a fixed point radiator, solutions g(v) are interpreted
as the Green’s function for the propagation channel between vs and v.

It is often possible to model the acoustic channel with a horizontally stratified ocean as shown in
Figure 20.40, where sound speed c(v) = c(z) is a function of depth only and surface and bottom act
as partially reflecting parallel plates. At greater distances this model is more accurate since only rays
confined in the deep sound channel have survived surface and bottom scattering and attenuation. In this
case we may separate out dependence on z in (20.95) and simplify by centering the (x, y) coordinate
system on the source so g(v, vs) may be re-parameterized as g(v̄, z, zs) where v̄ = [x − xs, y − ys]T .
The 2-D inverse spatial Fourier transform relationship with respect to only x and y is then

g(v̄, z, zs) = 1

4π2

∫ ∞

−∞
G(k, z, zs)e

jkT v̄ dk, (20.96)

where k = [kx , ky]T is the 2-D horizontal wavenumber vector. Note that the medium wavenumber is
given by K 2 = k2

x +k2
y +k2

z . Acoustic pressure g(v̄, z, zs) is interpreted as that seen by a hydrophone at
depth z and 2D range v̄ relative to the source, which is at depth zs . The wave equation is then expressed
in the 2-D spatial frequency domain by substituting (20.96) into (20.95)

1

4π2

∫ ∞

−∞

[
∇2 + K 2(z)

]
G(k, z, zs)e

jkT v̄ dk = − 1

4π2

∫ ∞

−∞
δ(z − zs)e

jkT v̄ dk, (20.97)[
∂2

∂z2 + K 2(z)− |k|2
]

G(k, z, zs) = −δ(z − zs), (20.98)

where in (20.97) we have used δ(v − vs) = δ(v̄)δ(z − zs) and − 1
4π2

∫∞
−∞ e jkT v̄ dk = δ(v̄).

Equation (20.98) follows by matching the Fourier transform arguments, noting that G(k, z, zs) does not
depend on x or y, and that the vertical wave number is given by k2

z = K 2 − |k|2. Solutions G(k, z, zs)

to (20.98) are known as the depth dependent Green’s functions.
In general these solutions span a continuous range of k corresponding to the different directions of

arrival for the wave fronts at z. But in the horizontally stratified, waveguided case we are considering,
only discrete values of k for distinct ray paths represent propagation modes with significant energy, and
these directions of arrival at (v̄, z) are confined to the vertical plane containing the source and sensor.
Thus G(k, z, zs) typically consists of a series of complex-amplitude-scaled delta functions at discrete
wavenumbers kn corresponding to the nth propagation ray. The inverse transform of (20.96) then takes
the form

g(v̄, z, zs) = 1

4π2

∑
n

G(kn, z, zs)e
jkT

n v̄. (20.99)
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A central component of every MFP algorithm is a numerical simulation for the forward propagation
model. Given a sound velocity profile c(z), the simulation solves (20.98) for the discrete rays and uses
(20.99) to compute g(v̄, z, zs) as a function of all v̄ and zs values in the search range and for every z
corresponding to a sensor array element depth. The fundamental MFP strategy is to solve the inverse
propagation problem with an exhaustive search for the best match with respect to v̄ and zs between the
forward modeled responses and the measured sensor array response structure seen in output samples y(i).

Assuming a vertical line array of M elements and an MFP search in range and depth, the sampled
data vector at the array is

y(i) = a(v̄, zs)s(i)+ n(i), (20.100)

where the parametric array spatial response vector is given by

a(v̄, zs) =
⎡⎢⎣ g(v̄, z1, zs)

...

g(v̄, zM , zs)

⎤⎥⎦ (20.101)

and where zm, 1 ≤ m ≤ M , is the depth of the mth array hydrophone sensor, s(i) is a zero-mean
Gaussian random source process with variance σ 2

s and n(i) is the noise sample vector including flow
noise, surface winds and shipping, biologics, etc. Assuming wide sense stationarity, the covariance
matrix is

R = E[y(i)yH (i)] = σ 2
s a(v̄, zs)aH (v̄, zs)+ Rn = Rs(v̄, zs)+ Rn. (20.102)

As an MPF performance metric one can quantify how unique the array spatial response is for distinct
values of the parameters v̄ and zs , since this is related to the invertibility of the channel. To this end, a
very useful measure is the ambiguity function defined as

φ(v̄1, z1; v̄2, z2) =
∣∣∣∣ aH (v̄1, z1)

‖a(v̄1, z1)‖ · a(v̄2, z2)

‖a(v̄2, z2)‖
∣∣∣∣2 . (20.103)

If φ(v̄1, z1; v̄2, z2) has multiple equally large peaks, then the MFP solution is ambiguous. Ideally it
would have a single narrow peak at (v̄1 = v̄2; z1 = z2) for all v̄1, z1, which would yield high resolution
unique solutions, but significant sidelobe patterns are common. Array length and depth and the sound
velocity profile c(z) affect the shape of the ambiguity function and thus channel invertibility.

3.20.7.4 Acoustic vector sensors
As we transition to microphone arrays for aeroacoustical applications, we briefly mention here a rela-
tively new type of acoustical vector sensor (AVS), which essentially amounts to an “array on a sensor.”
An AVS can measure the vector-valued acoustic particle velocity in addition to the scalar-valued sound
pressure, and such sensors have been manufactured for acoustic measurements in both air and water.
An example of an aeroacoustic vector sensor is shown in Figure 20.41. The output of a general AVS in
free space can be represented as

y(t) =
[

1
u(θ, φ)

]
x(t)+ n(t), (20.104)
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FIGURE 20.41

A vector acoustic sensor manufactured by Microflown Technologies, The Netherlands.

where x(t) represents the sound pressure, n(t) noise and interference, and

uT (θ, φ) = [cos (θ) cos (φ) sin (θ) cos (φ) sin (φ)]T

is a unit vector at the sensor pointing towards the source at azimuth angle θ and elevation angle φ. If
the sensor is located near a reflecting surface (e.g., a wall or the ocean floor), then a reflection term is
added to (20.104) to account for the source image.

The key distinguishing feature of an AVS is the fact that it produces a four-dimensional measurement
at essentially a single point in space. A single AVS can be used to localize two separate sources, and
additional resolving power can be obtained by an array of AVS within a relatively small aperture.
AVS provide an interesting alternative to standard hydrophones or microphones in acoustic source
localization and signal recovery.

3.20.8 Microphone arrays
The processing of acoustic signals in the air using arrays of microphones has received significant atten-
tion, although considerably less than for underwater acoustics due to the ubiquitous use of sonar in naval
operations. While the use of microphone arrays has also been proposed for military applications, such as
localization or identification of vehicles, helicopters, sniper fire, etc., such arrays have perhaps enjoyed
more success in commercial settings, particulary those related to speech recovery or enhancement. For
example, the ability of microphone arrays to locate an acoustic source such as a speaker, extract an
acoustic signal in a noisy and reverberant environment, and synthesize arbitrary sound fields has led to
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FIGURE 20.42

4 × 4 microphone array manufactured by iSEMcon GmbH, Germany.

their use in advanced video-conferencing systems, “hands-free” communication systems, surveillance
of criminal activity and simulation of concert hall acoustics in high-end audio systems. Figure 20.42
shows a 4 × 4 array used for sound field mapping and source localization. A simple array typical of
those used for teleconferencing applications is shown in Figure 20.43.

Similar to underwater acoustics, signal processing with microphone arrays relies on wideband data
models, where the propagation time across the array is usually much greater than the inverse bandwidth.
For example, it takes about 6 ms for sound to travel one half meter (a typical array aperture), while
the inverse bandwidth of a speech signal is around 0.2–0.5 ms. On the other hand, since the speed of
sound in air is over four times slower than in water, and since the frequencies of interest for aero-
acoustics are usually higher than in sonar, microphone arrays can be much more compact. At 1 kHz,
the wavelength of sound is about 30 cm, so arrays with apertures under a few meters are common.
Consequently, plane-wave propagation models are typically assumed, at least locally, in the vicinity of
the array. Propagation in outdoor environments is complicated by wind and temperature gradients that
make precise localization difficult over long ranges. Even in situations where straight-line propagation
can be assumed, random fluctuations in the air and temperature will cause a transmitted and received
acoustic signal to lose temporal coherence if the signal travels a large distance. Indoors, the main obstacle
to overcome is reverberation due to reflections of the sound from floors, walls, ceilings, furniture, etc.
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FIGURE 20.43

Microphone array used in video-conferencing applications. Manufactured by Polycom, Inc., San Jose, CA.

Consequently, the focus of most microphone array applications in outdoor settings is source localization,
while indoors the most common problem is reconstruction of a desired acoustic source in the presence
of noise and multipath. We briefly discuss aspects of these two problems below.

3.20.8.1 Aeroacoustic source localization
The term “acoustic camera” is often used to refer to microphone arrays that are used to characterize
sound fields and locate sources of acoustic energy. Since the aeroacoustic signals used for localization
are typically wideband, models for the problem tend to be formulated in the frequency domain. Let
y(t) = [y1(t) · · · yM (t)]T denote the output of an M-microphone array. Assuming zero-mean wide-
sense stationary signals, the array output is characterized by its cross-correlation matrix

Ry(τ ) = E{y(t + τ)y(t)T } (20.105)

and the corresponding cross spectral density (CSD) matrix Gy(ω) whose i, j th element is defined as

G y,i j (ω) =
∫ ∞

−∞
Ry,i j (τ )e

− jωτdτ, (20.106)

where Ry,i j (τ ) is element i, j of Ry(τ ).
In general, the elements of the CSD may be expressed as

G y,i j (ω) = e− jωτi j (p)Gs,i j (ω)+ σ 2δi j (ω), (20.107)

where σ 2(ω) is the CSD of the noise (assumed to be uncorrelated at each microphone), τi j (p) is the
propagation delay between the two microphones, which is a function of the location of the source p, and

Gs,i j (ω) = γs,i j (ω)[Gs,i (ω)Gs, j (ω)]1/2, (20.108)
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where γs,i j (ω) is the spectral coherence function for the two sensors satisfying 0 ≤ |γs,i j (ω)| ≤ 1, and
Gs,i (ω) represents the CSD of the source at microphone i. In general, Gs,i (ω) 
= Gs, j (ω) when i 
= j
due to propagation inhomogeneities that occur as the signal travels between the two microphones. If
microphones i and j are close enough together such that one can assume spatially coherent planewave
propagation between them, then γs,i j (ω) = 1 and Gs,i (ω) = Gs, j (ω).

A convenient and very general approach is to assume an array-of-arrays situation, where several (say,
K) arrays of closely-spaced microphones with locally coherent propagation are distributed over a larger
area and separated by distances over which coherent propagation cannot generally be assumed. This
model subsumes the two cases discussed above. If the vector outputs of each array yk(t) are stacked
on top of each other to form the super-vector y(t) = [y1(t)T · · · yK (t)T ]T , then the M K × M K CSD
matrix will be given by

Gy(ω,p) =
⎡⎢⎣ a1(ω,p)aH

1 (ω,p)Gs,1(ω) · · · a1(ω,p)aH
K (ω,p)e− jωτ1K (p)Gs,1K (ω)

· · · . . . · · ·
aK (ω,p)aH

1 (ω,p)e− jωτK 1(p)Gs,K 1(ω) · · · aK (ω,p)aH
K (ω,p)Gs,K (ω)

⎤⎥⎦
+ σ 2(ω)I, (20.109)

where I is an M K × M K identity matrix (assuming for simplicity that the noise CSD is the same at
each array),

ak(ω,p) =
⎡⎢⎣ e− jωτk,11(p)

...

e− jωτk,1Mk (p)

⎤⎥⎦ , (20.110)

and where τk,i j (p) represents the propagation delay between microphones i and j for array k with Mk

elements.
If one has access to the outputs of all K of the arrays and the various source CSDs Gs,i j (ω) are

known, a procedure for estimating the source location p based on samples of Gy(ω,p) at different
frequencies can easily be formulated. Such an approach would require the arrays to share all their data
with a fusion center, which incurs a large communication overhead. In addition, knowledge of Gs,i (ω)

implies that the arrays can somehow obtain time-aligned measurements of the source CSD, which is
problematic without knowledge of the source location. The latter issue can be resolved by absorbing
the time-delay terms e− jωτkl (p) between arrays k and l into Gs,kl(ω), and basing the estimate of p on
just the intra-array phase shifts. An alternative approach is to estimate the direction-of-arrival (DOA) of
the source signal at each array using only the locally calculated CSD matrix ak(ω,p)aH

k (ω,p)Gs,k(ω)

(the location of the source is not identifiable at each array individually, only the source DOA). Each
array would then forward only its estimated DOA to the fusion center, which would then estimate
p via triangulation. Various studies of the Cramér-Rao Bound have been conducted to determine the
difference in achievable performance for these approaches.

3.20.8.2 Wideband adaptive beamforming
As mentioned above, in many microphone array applications, locating an acoustic source is less impor-
tant than extracting its waveform in a reverberant and noisy environment. In relatively short-range
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indoor settings where factors that influence acoustic propagation (temperature, pressure, wind, etc.) are
uniform, Doppler and dispersion effects can be ignored, and to a very good approximation the array will
simply receive scaled and delayed versions of the source via a (potentially large) number of reverberant
paths. In particular, at microphone m, the received acoustic signal can be represented as

ym(t) =
N∑

i=1

αi,ms(t − τi,m)+ nm(t), (20.111)

where s(t) is the desired source, N denotes the number of multipath echoes from the source to the
microphone, {αi,m, τi,m} are the amplitude and the delay corresponding to path i at microphone m, and
nm(t) is due to all other background noise and interference.

The most common approach to extracting s(t) from the M-element microphone array output is via
a wideband beamformer:

ŝ(t − t0) =
M∑

m=1

L∑
l=0

wml ym(t − lTs), (20.112)

where Ts is the sampling period of the array,wml is the beamformer weight for microphone m at sample
l, and t0 is an arbitrary delay. This essentially amounts to a space-time equalizer similar to what might
be employed in a frequency-selective wireless RF channel. The difference in the microphone array
application is that one typically does not have access to periodic “training” data from the source to
facilitate updates of the beamformer/equalizer weights, either in time via the LMS or RLS algorithms,
or using a data-adaptive approach like MVDR beamforming. Instead, other factors must be exploited
to adapt the weights. For example, one may know or be able to estimate the approximate location or
DOA of the source, as in automobile voice-enhancement or video conferencing systems where the
speaker(s) are confined to certain positions. Likewise, knowledge of the location of strong sources of
acoustic interference (e.g., TVs, air conditioners, windows, etc.) can also be taken advantage of to help
the filter focus on the source of interest. Adaptive noise canceling approaches are possible if reference
waveforms are available for the interference, obtained for example by placing a microphone near the
interfering source. One can also exploit situations where the source or interference is known to have
strong components at certain frequencies, although in this case it is advantageous to implement the filter
in the frequency domain:

Ŝ(ωk) =
M∑

m=1

Wm(ωk)Ym(ωk). (20.113)

Important factors to consider when implementing a wideband beamformer in microphone array
applications are the sampling period Ts and the length L of the equalizer, which in many situations can
be quite large for the required value of Ts . For example, to reconstruct a speech signal with a 3 kHz
bandwidth in a room where the path lengths of the echos may vary by 5 m could require a value of L
on the order of 300–400. For this reason, in computationally constrained scenarios, one may be forced
to settle for a space-only beamformer followed by an adaptive echo canceler.
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3.20.9 Chemical sensor arrays
In recent years, the use of model-based signal processing with chemical sensor arrays has received
significant interest. Driving this interest has been important applications such as enironmental monitor-
ing of air and water quality, chemical spills, detection and localization of air- or waterborne chemical
weapons and even landmines. The ability to quickly discover and accurately locate sources of toxic
chemicals is obviously a critical factor in mitigating their negative impact. The term “model-based” is
used here to contrast against classical methods that simply use arrays of sensors to improve coverage
or increase the probability of detecting a chemical event. While these are clearly important, our focus
below will be on approaches that employ parametric models to describe chemical flow across the sen-
sors, and as such can be used to locate and quantify other properties of the source(s) in addition to
simply detecting their presence.

The key differentiating feature of applications involving chemical sensor arrays compared with others
considered in this chapter is the fact that the signals of interest propagate according to diffusion rather
than wave equations. Additional complications such as imprecisely known wind/currents, turbulence,
eddys, vortices and boundary effects make it difficult to obtain an accurate mathematical model except in
fairly simple circumstances. Nevertheless, results obtained from simplified models of the environment
can serve as valuable approximations that provide useful information. Furthermore, they can be used to
focus the local implementation of more complicated numerical operations that would be too involved
to perform globally.

To illustrate the application of sensor arrays in localizing a diffusing chemical source, we will
consider a simple example involving a point source in an open environment (all surfaces and other
boundaries are far enough removed from the source and array so that their effects can be neglected) with
homogeneous diffusivity in all directions. Assume the source is located at position r0 = [x0, y0, z0]T

and at time t0 begins emitting the chemical substance at a constant rate of μ kg/s. Assume also that a
wind/current is present with constant velocity vector v. For this case, the diffusion equation that governs
the concentration c(r, t) of the substance at some position r at time t > t0 is given by

∂c(r, t)

∂t
= κ∇2c(r, t)− ∇c · v, (20.114)

where κ measured in m2/s is the diffusivity of the medium, which in the above expression is assumed
to be incompressible. The solution to (20.114) is given by c(r, t) = μa(r, t), where

a(r, t) = 1

8πκ‖r − r0‖ exp

{
(r − r0)

T v
2κ

}
×
[

exp

{‖r − r0‖‖v‖
2κ

}
erfc

(
‖r − r0‖

2
√
κ(t − t0)

+ ‖v‖
√

t − t0
4κ

)
(20.115)

× exp

{−‖r − r0‖‖v‖
2κ

}
erfc

(
‖r − r0‖

2
√
κ(t − t0)

− ‖v‖
√

t − t0
4κ

)]
, (20.116)
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where erfc(x) = 2
π

∫∞
x e−y2

dy is the complementary error function. While technically the above model
is appropriate for molecular diffusion, it can be applied to larger scale scenarios involving convective
diffusion by adjusting the value of the diffusivity κ .

To characterize the chemical concentration at any point in space or time, one would need to know
μ, the “strength” of the source, as well as the parameters in the vector θ = [rT

0 κ t0]T , which include
the location of the source and the time it became active. The diffusivity κ is also treated as an unknown
constant, since it will depend on environmental factors (temperature, humidity, etc.) in a complicated
way. To determine these unknowns, an array of sensors that measure the concentration of the chemical
can be deployed. For example, a given sensor located at position ri would observe the following
concentration at some specific time tk :

yi (tk) = a(ri , θ , tk)μ+ ni (tk),

where ni (t) represents noise or modeling errors, and a is written as an explicit function of θ to emphasize
its dependence on the parameters of interest. If the observations from M sensors taken at K distinct time
samples are stacked into a single observation vector y, where element p of y is indexed according to
p = M(k −1)+ i for k = 1, . . ., K and i = 1, . . .,M , the standard array processing model is obtained:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(r1, θ , t1)
...

a(rM , θ , t1)
a(r1, θ , t2)

...

a(rM , θ , tK )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
μ+ n = a(θ)μ+ n, (20.117)

where the vector of noise samples n is organized like y, and element p = M(k −1)+ i of the “steering”
vector a(θ) is given by a(ri , θ , tk). With the model of (20.117) in hand, one can apply standard array
processing techniques to estimate μ and θ , provided that (20.117) is identifiable. In principle, unique
identification of the three location parameters in θ , namely r0, requires that M ≥ 4, and of course we
require that the total number of observations MK exceed the number of free parameters (six in this
model). In practice, of course, MK will likely need to be much larger than six in order to combat the
effects of noise.

While the discussion above was for the simple case of an infinite open environment, a similar approach
can be taken for more complicated scenarios provided that the diffusion equation can be solved. Cases of
particular interest that have been addressed include a semi-infinite medium (e.g., a source on the ocean
floor) and a large room of known dimensions. Boundary conditions play an important role in such
cases, and different results are obtained depending on whether or not the boundaries are permeable to
the chemical of interest. Source models different from the step function model assumed above can also
be employed, such as impulse or pulsed waveforms. In settings involving very complicated geometries
(e.g., urban canyons, buildings with offices and hallways, etc.), moving sources or sensors, or when more
realistic propagation effects are taken into account (e.g., turbulence, eddys, inhomogeneous diffusivity,
etc.), numerical methods are required to evaluate the response of the array to the chemical source. Details
for these different modeling assumptions can be found in the references at the end of the chapter.
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3.20.10 Conclusion
As we have seen above, the applications of array signal processing stretch from locating the sources
of electrical energy from tiny neurons in the brain to astronomical objects millions of light-years away
to submarines deep below the surface of the ocean. Remarkably, all of these applications share a very
consistent underlying mathematical model that often allows techniques developed for one problem
to apply to others in different fields. For this reason, we see similar methods appearing in journals
related to radar, sonar, neurophysiology, acoustics, radio astronomy, medical imaging, seismology,
and navigation, although explained in many cases with different terminology or emphases. Superficial
differences in language aside, while the methods in the literature of these different areas are similar,
they are not identical; each application has its own peculiarities that warrant special attention. Thus,
in addition to showing what is common among the problems considered, our goal has also been to
highlight the unique features of each application, and hence to provide motivation for the particular
methodologies researchers and practitioners have adopted for these applications. Clearly, our discussion
has only scratched the surface, and many details have been glossed over. It is our hope that we have
piqued the reader’s interest enough to pursue some of these details in the reference list (which is itself
a small subset of what is available).

Relevant Theory: Signal Processing Theory, Machine Learning, and Statistical Signal Processing

See Vol. 1, Chapter 2 Continuous-Time Signals and Systems
See Vol. 1, Chapter 3 Discrete-Time Signals and Systems
See Vol. 1, Chapter 4 Random Signals and Stochastic Processes
See Vol. 1, Chapter 5 Sampling and Quantization
See Vol. 1, Chapter 6 Digital Filter Structures and Their Implementation
See Vol. 1, Chapter 7 Multirate Signal Processing for Software Radio Architectures
See Vol. 1, Chapter 8 Modern Transform Design for Practical Audio/Image/Video Coding Applications
See Vol. 1, Chapter 9 Discrete Multi-Scale Transforms in Signal Processing
See Vol. 1, Chapter 10 Frames in Signal Processing
See Vol. 1, Chapter 11 Parametric Estimation
See Vol. 1, Chapter 12 Adaptive Filters
See Vol. 1, Chapter 20 Clustering
See Vol. 1, Chapter 21 Unsupervised Learning Algorithms
See Vol. 1, Chapter 25 A Tutorial on Model Selection
See this Volume, Chapter 2 Model Order Selection
See this Volume, Chapter 7 Geolocation—Maps, Measurements, Models, and Methods
See this Volume, Chapter 8 Performance Analysis and Bounds
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